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We introduce a typedπ-calculus where strong normalisation is ensured by typa-

bility. Strong normalisation is a useful property in many computational contexts,

including distributed systems. In spite of its simplicity, our type discipline cap-

tures a wide class of converging name-passing interactive behaviour. The proof of

strong normalisability combines methods from typedλ-calculi and linear logic with

process-theoretic reasoning. It is adaptable to systems involving state, polymor-

phism and other extensions. Strong normalisation is shown to have significant con-

sequences, including finite axiomatisation of weak bisimilarity, a fully abstract em-

bedding of the simply-typedλ-calculus with products and sums and basic liveness

in interaction. Strong normalisability has been extensively studied as a fundamental

property in functional calculi, term rewriting and logical systems. This work is one

of the first steps to extend theories and proof methods for strong normalisability to

the context of name-passing processes.
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1. INTRODUCTION

Background. The formal study of types in programming languages and computational
calculi has led to the understanding that types can ensure a wide range of desirable com-
putational properties, ranging from error-free execution to precise logical specification of
program behaviour. One important property in this context, widely found in typedλ-
calculi, isstrong normalisation (SN), which says that computation in programs necessarily
terminates regardless of evaluation strategy. This is interesting from a logical viewpoint
especially because, by the correspondence between proofs and programs, SN of certain
λ-calculi implies consistency of the corresponding logical systems. For this reason, func-
tional calculi and logics have been the main focus in the study of strong normalisability.

The significance of SN is, however, not limited to this traditional setting. SN is also in-
teresting in the context of communicating processes. As an example, consider a distributed
client-server interaction: when a client requests some service, s/he may naturally wish the
computation on the server’s side to terminate and return an answer. SN is thus a basic re-
quirement for, say, interaction between banks and their customers. As another example, the
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resource preservation guaranteed by SN has been one of the main reasons for Gunter and
his colleagues to develop their typed programming language for active networks (PLAN)
[25, 54] on the basis of a simply typedλ-calculus. Such languages would in general re-
quire primitives for communication and concurrency. This suggests a systematic effort to
extend the accumulated theories of functional SN types to the realm of interactivity is a
worthwhile endeavour.

We are thus motivated to reposition and study strong normalisability in the context of
process theory. In particular, is there a basic typed process calculus in which strongly nor-
malising functional calculi are faithfully embeddable? By faithful, we mean that typability
of the encoding automatically ensures strong normalisability of the source calculus. More
ambitiously, can we obtain exact semantic correspondence, including full abstraction and
full completeness? Obtaining affirmative answers to these questions would not be of mere
theoretical interest: since typedλ-calculi offer a basic theory of procedure calls, a funda-
mental abstraction in programming, embeddability of SN functional calculi would capture
interactive behaviour powerful enough to involve non-trivial procedural calls while main-
taining SN. Exploration of strong normalisability in this broader context might also shed
new light on typed functional computation itself.

The present work is a trial in this direction, introducing a typedπ-calculus in which first-
order strongly normalisingλ-calculi are fully abstractly embeddable. The type discipline
simply adds causal chains to the system introduced in [11] where we established a fully
abstract encoding of PCF. This small addition radically changes the class of typable process
behaviour, turning possibly diverging computation into a strongly normalising one. As
would be imagined by the embeddability of typedλ-calculi, the proof of SN is non-trivial,
defying naive structural induction. We adapt methods developed for strongly normalising
λ-calculi [8, 23, 61], combined with process-algebraic reasoning techniques [11, 51, 53, 57,
66]. As far as we know, this is the first time a compositional principle for ensuring SN has
been established for name passing processes with non-trivial use of replication. The proof
method for SN is applicable to significant extensions of the presented formalism, including
state and polymorphism [12, 32, 35, 67, 68]. Further discussions on these extensions are
found in Section 7. In the following, we outline key technical ideas and relate our work to
the existing literature.

The π-Calculus. Following [11], we use an asynchronous variant of theπ-calculus [31].
Computation in this calculus is generated by interaction between processes.

x(~y):P j xh~vi �! Pf~v=~yg

Here~y denotes a potentially empty vectory1:::yn, j denotes parallel composition,x(~y):P
is input, andxh~vi is asynchronous output. Operationally this reduction represents the con-
sumption of an asynchronous message by a receptor. The idea extends to a receptor with
replication

!x(~y):P j xh~vi �! !x(~y):P jPf~v=~yg;

where the replicated process remains in the configuration after reduction, which behaves
as a shared resources or a remote server. As a simple example of a process, first consider
theforwarder agentFwhabi

Fwhabi
def
= !a(x):bhxi



which repeatedly inputs a value ata and outputs it immediately atb. As another example,
the following is a client which requests, viaa, to have a value returned via a private name
c

a(c)c(y):P

wherea(c)c(y):P stands for(νc)(ahci j c(y):P) with (νc) being a restriction operator. Us-
ing these agents,R below is a simple way to represent what may be regarded as a denial of
service atc.

R
def
= Fwhaai ja(c)c(y):P

This process does not directly demonstrate circularity as in the example above. However,
sinceR causes an infinite reduction sequence, the receptorc(y):P waits forever for an
answer atc. In an untyped setting,R is equal toa(c)c(y):P up to asynchronous bisimilarity
[31], but the two are quite different regarding resource consumption. The next example
shows how subtleties arise through new link creation of theπ-calculus.

a(x):Fwhbxi ja(c)Fwhcbi jb

After one step reduction viaa, we obtain

Fwhbci jFwhcbi jb

which exhibits divergence.

Type Discipline for SN. The type discipline of this paper is a simple refinement of [11].
Concretely, the system is based on two central ideas:

(1) Linear types [22, 42, 44, 66], which ensure that a channel is used exactly once for
input/output and, for a replicated channel, an input occurs exactly once and output occurs
zero or more times [11, 40, 50, 53, 57].

(2) Action types with causality, where causality is represented by edges in a directed
graph whose acyclicity ensures the absence of circular dependencies [42, 44, 66], cf. [22].
Transmission of causality is controlled by a form ofcut elimination in action types.

Let us illustrate these points by examples. In the standard typing system of theπ-calculus
[50, 64],Fwhabi is typed as follows:

` Fwhabi.a :(τ)
b :(τ)

wherea : (τ) represents that namea inputs or outputs value with typeτ; 
 represents the
disjoint union of channel types (often written “a : (τ);b : (τ)”). As first refinement, we
attachaction modes to types to ensure the linearity of channels. To simplify discussions,
here we use only two modes, “!” and “?”, which representunique server andclient requests

to server, respectively. Let us assumeFwhabi
def
=!a:b which does not carry any name for

simplifying examples. This process has the following type.

` Fwhabi.a :()! 
b :()? (1)

This type means that a unique replicated input (server) exists ata andb is a channel that
is used for service requests from a unique replicated server atb [10, 11, 27, 57]. When



composing processes, cut elimination occurs between input and output on a shared name
with dual types. Here ! and ? are dual to each other, cf. [22], so that cut elimination occurs
between()! and()?, resulting in()! since the server can always consume a client request.
Thus the composition ofFwhabi andFwhbci is typed as:

` Fwhabi jFwhbci.a :()! 
b :()! 
 c :()?: (2)

The ideas similar to the refinement above were already presented in [10, 11, 27, 42, 57].
But none of those typing disciplines ensures termination of processes. In fact, the diverging
process in (1) is still typable as follows.

` Fwhbci jFwhcbi.b :()! 
 c :()! (3)

In the light of such examples, the second refinement introduces the idea to record causality
of behaviour in types. For example,Fwhabi is now typed as follows:

` Fwhabi.a :()! ! b :()?

Herea : ()! ! b : ()? indicates that the process repeatedly inputs ata and then outputs at
b. Cut elimination now occurs between dual input and output by keeping the causality
between channels. For example, we have:

(a :()! ! b :()?)
 (b :()! ! c :()?) = (a :()! ! c :()?)
 (b :()! ! c :()?)

hence we can type the process in (2) as:

` Fwhabi jFwhbci.a :()! ! c :()?
b :()! ! c :()?

Now we can detect a cyclic dependency such asFwhbci jFwhcbi in (3) by looking at their
typesb : ()! ! c : ()? andc : ()! ! b : ()? [32, 40, 66] (which, when combined, induces a
vicious circle). This simple causality information turns the system with possibly diverging
processes [10, 11] into a strongly normalising one. The type discipline based on these ideas
is formally presented in Section 2.

Proving SN for the π-Calculus. To prove SN for typable processes, the first idea would
be, in the light of the previous examples, to show that reduction steps follow a non-circular
ordering on free channels, e.g. the reductions ofahvijFwhabijFwhbci proceed ata, b and
c in this order, but inahvijFwhabijFwhbai are repeated betweena andb. However, due
to creation of new links and replication of terms, both being crucial features ofπ-calculi,
such reasoning is infeasible, at least in its naive form. To see this, consider the following
process which only adds one name restriction “a(c)” to CCS term:

!a(x):(xjx) ja(c)Fwhcbi j !b:(ahyijahyi) (4)

(this process is typable bya:(()?)! 
b:()! ! y:()? as we shall see later). The process owns
reductions first ata, then atb, then ata again. Further, the number of redexes increases
exponentially in its course,but the computation terminates. Such behaviour occurs when a
process requests the same resource more than once in an interaction, e.g. in an encoding of



theλ-termλxyz:((xz)(yz)) [49]. The difficulty in analysing (4) can be seen by considering
the following subterm of a one step descendant of (4).

(ν c)(c j c jFwhcbi)

It contains a chainc! b, which is difficult to determine beforec is passed. But if we
naively represent causality incorporating bound names in (4), there is a circular chaina!
c! b! a, although this cycle never arises in actual interaction. How can we then prove
termination? Simple structural inductions would not be usable for the same reason they do
not work in typedλ-calculi [8, 20].

The idea we use is suggested by SN proofs for typedλ-calculi, due to, among others,
Tait [61]. His method employs a semantic interpretation of each type[[σ]] as a collection of
strongly normalisingλ-terms, and shows that all typable terms are indeed in these sets. A
key step is to prove thatλx : σ:M 2 [[σ! τ]] for eachM : τ (for which by inductionM 2 [[τ]]),
which means, by definition,(λx:M)N 2 [[τ]] for eachN 2 [[σ]]. But all semantic types have
the property thatMfN=xg 2 [[τ]] and(λx:M)N �!MfN=xg imply (λx:M)N 2 [[τ]], hence
we have only to showMfN=xg 2 [[τ]]. To be able to do this we strengthen the induction
hypothesisM 2 [[τ]] to M 2 [[τ]]ρ for each environmentρ, mapping each variable of typeσ
to some term in[[σ]]. Now the result is immediate [8, 20]. While we cannot use an identical
framework due to the different nature of reduction in theπ-calculus, a similar technique
works “for the induction to go through”. A key observation concerns the close correspon-
dence between the substitutionMfN=xg and the consumption of a messagexhvi by a repli-
cated process !x(y):Q. Thus, at each induction step, we prove thatPj(R 1j:::jRn) converges
for each possible “environment”R1j:::jRn which complementsP. Termination behaviour
is calculated via the extended reduction suggested by strong bisimilarity (which does not
change termination) together with replication theorems [11, 51, 57]. Finally acyclicity in
causality yields strong normalisation.

Summary of Contributions. The following summaries main technical contributions of
the present paper. (4) solves an open problem in [49] for the simple type hierarchy.

(1) Introduction of a linearπ-calculus in which where strong normalisability is ensured
by typability.

(2) Establishment of the proof methodology for strong normalisability of typable pro-
cesses, combining ideas from traditional SN proofs for typedλ-calculi with process-theoretic
reasoning. We also show the result extends to the linearπ-calculus with free name passing
via encoding.

(3) Establishment of the finite axiomatisation of the weak bisimilarity in linear pro-
cesses as a consequence of strong normalisability. The axiomatisation yields an effective
procedure to compute equality over linear processes via their normal forms.

(4) Embedding, using Milner’s encoding [49], of the simply typedλ-calculus with
sums and products (λ!;�;+) into our typedπ-calculus. The embedding is fully abstract
w.r.t. the observational congruence ofλ!;�;+, justifying all commutative conversions and
η-equations [6, 18, 19, 23], automatically leading to SN in the source calculus.

(5) Establishment of a basic interaction-based liveness property in linear processes via
their strong normalisability, bridging the traditional notion of SN and one of the basic
properties in concurrent, interactive computation.



Related Work. Strong normalisation in typedλ-calculi has been studied extensively in
the past; detailed surveys can be found in [8, 20]. The present paper shows that traditional
methods for proving SN can be adapted to interacting processes, suggesting their applica-
bility to a new domain.

Abramsky extends the Curry-Howard correspondence to linear logic [22] using proof
expressions (which are proof nets in term form), and proves their SN [1], guiding our
present usage of acyclicity in names. This programme is taken further with realisability
semantics of linear logic in [5] where CCS processes act as realisers, using renaming op-
erators for typed process composition [27]. The operational structure of [5] follows his
own π-calculus encoding of proof nets [2], offering a process-algebraic understanding of
semantics of linear logic. The appeal of realisability lies in treating semantics and syn-
tax uniformly on a logical basis. In the context of SN types for theπ-calculus, sharing
of names and dynamic link creation in theπ-calculus would make it difficult to directly
apply the framework in [1, 5]. In comparison, the present work offers a basic type disci-
pline which does not directly correspond to known logical systems but which is based on
algebra of processes and simple operational principles, resulting in a new effective method
to ensure SN for name passing processes.

As our initial example of server-client interaction suggests, SN in processes is closely
related to liveness. Yoshida [66] presents a typedπ-calculus with a local liveness property.
Kobayashi and his colleagues [38, 40–42] propose several typing systems which ensure
different forms of liveness; for example [41] time quotas are assigned to communications
for this purpose. Sangiorgi [56] proposes a typing system to guarantee what he calls re-
ceptiveness, which means that an appropriate input prefix is always available. Unlike the
present work, these and other preceding typing systems forπ-calculi [11, 26, 27, 55, 57]
do not guarantee SN and the associated liveness properties for processes involving non-
trivial use of replication. As a result, embeddability of, say,λ! in these systems does not
guarantee the SN of the source calculus.

Since the present work was reported in [68], Sangiorgi has proposed a strong normalis-
ing typing system for theπ-calculus with summation and first order recursive agents. He
explicitly adds a global name ordering in processes [58] (this ordering is close to a prop-
erty derived in our typing system, cf. Proposition 2.1) to ensure strong normalisation. His
proofs are similar to ours, using type-directed predicates for termination. His types do not
seem to ensure liveness at linear channels. A fully abstract embedding of existing calculi
as presented in the present work and the finite axiomatisation of the weak bisimilarity are
not reported in [58]. On the other hand, his system can type processes with first-order state
(we note that the corresponding result in our setting was discussed in [68, Section 6], see
also Section 7 and below), showing another operational investigation for termination in the
π-calculus.

A basic feature of our approach is that we construct an integrated calculus combining
restricted calculi with clear behavioural characterisations in a bottom-up fashion, cf. [10,
35]. This leads to, among others, a proof methodology for strong normalisability which
smoothly extends to other classes of behaviours such as stateful, polymorphic and concur-
rent computation. For example, [12] establishes strong normalisability of linear processes
with second-order polymorphism using the extension of the present proof method based on
reducibility candidates induced by double-negation closure, cf.[22]. [67] extends the proof
method in the present paper to obtain strong-normalisation of first order state, combining
it with recent proof techniques of termination in Classical Logic [43, 62]. These results



can further be augmented to proving liveness in the presence of non-termination and non-
determinism by mixing type structures [11]. This incremental nature of type structure also
leads to significant applications of SN to semantics of processes. For example, [69] reports
a new bisimilarity method associated with linear type structure and strong normalisability
and presented its applications to secrecy in programming languages [16, 59, 60]. In another
paper [35], we adapt these results to a practical direction, proposing and verifying the new
typing systems for secure programming languages based on linear/affine typedπ-calculi,
where strong normalisability and linearity play a fundamental role in the analysis.

One of the basic aspects of the type structure in the present work,input-output modes
(cf. [4, 37, 50, 53]), has its incarnation in the context of Linear Logic, yielding its variant
calledPolarised Linear Logic (LLP) [47, 48], studied by Olivier Laurent. Proof nets for
LLP are faithfully embeddable in the replicated fragment of the present calculus (i.e. the
sub-calculus which only use !-? types), preserving dynamics. Acyclicity in name usage
in the presented type discipline corresponds to the so-called Lafont-Regnier condition in
proof nets. These connections shed light on the constructions in the present paper from
a logical viewpoint, enriching its understanding. As key differences, the constructions
in LLP bear logical significance, making it an effective medium to relate computation
and proofs; whereas the present type discipline captures SN in the framework of basic
process-theoretic operators (parallel composition, hiding and prefix). This process-based
approach leads to a uniform type discipline integrating SN with other classes of behaviours,
including diverging computation, state and concurrency, as explored in [12, 32, 35, 67, 69].

Structure of the Paper. This paper is a full version of [68], presenting detailed proofs,
further examples and related results. Strong normalisability of theπ-calculus with free
output, not presented in [68], is discussed in Section 6. One of the main purposes of
this paper is to present the central ideas of, and core proof techniques for, the first-order
strong normalisable typedπ-calculus, as a basis of their further extensions and appli-
cations. The reader interested in further work associated with this paper may refer to
[12, 29, 32, 35, 67, 69]. In the rest of this paper, Section 2 introduces the syntax and the
type discipline of the first-order linearπ-calculus. Section 3 proves the main result, strong
normalisability. Section 4 presents a complete axiomatisation of weak bisimilarity in linear
processes. Section 5 gives a fully abstract encoding of the simply typedλ-calculus with
sums and products (λ!;�;+) in the calculus. Section 6 extends the results in the previous
sections to the calculus with free name passing. Section 7 discusses related results, among
others establishing the liveness property of linear processes.

2. PROCESSES AND TYPING

Following [10, 32, 68, 69], we use the asynchronous version of theπ-calculus [14, 31] with
bound output [56]. We can use free output with precisely the same results, as we shall show
in Section 6. However, the proofs for the main results (strong normalisability, axiomatisa-
tion of bisimilarity and fully-abstract embedding) are more lucidly presented with bound
outputs, cf. [10, 12, 56, 68]. Letx;y; : : :, a;b; : : : range over a countable set of names (also
called channels). The set of untyped terms,processes, is given by the following grammar.

P ::= x(~y):P input j P jQ parallel j 0 inaction
j x(~y)P output j (ν x)P hiding j !x(~y):P replication



(Structural Rules)

(S1) Pj0� P (S2) PjQ� QjP (S3) Pj(QjR)� (PjQ)jR

(S4) (νx)0� 0 (S5) (νx)(ν y)P� (νy)(ν x)P

(S6) (νx)(PjQ)� ((ν x)P)jQ (x 62 fn(Q)) (S7) x(~y)z(~w)P� z(~w)x(~y)P (x;z 62 f~w~yg)

(S8) (ν z)x(~y)P� x(~y)(ν z)P (z 62 fx~yg) (S9) x(~y)(PjQ)� (x(~y)P)jQ (f~yg\ fn(Q) = /0)

(Reduction)

(Com) x(~y):P j x(~y)Q�! (ν~y)(PjQ)

(Com!) ! x(~y):P j x(~y)Q�!! x(~y):Pj(ν~y)(PjQ)

(Par) P�! P0 =) PjQ�! P0jQ

(Res) P�! Q =) (ν x)P�! (ν x)Q

(Out) P�! Q =) x(~y)P�! x(~y)Q

(Cong) P� P0 �! Q0 � Q =) P�! Q

FIG. 1. Reduction and Structural Rules

The bound/free names are defined as usual. We assume that names in a vector~y are pair-
wise distinct. Up to structural equality, the outputx(~y)Q acts like(ν~y)(xh~yijQ) in the
standard syntax. The reduction relation! and the structural congruence� are defined in

Figure 1. The multi-step reduction!! is given as!!
def
=�[ �!�.

As a simple example of processes and their reductions, acopy-cat agent [37] is given by

[x! y]
def
=!x(c):y(c0)c0:c, which links two locationsx andy. Theomega agent is defined as

Ωu
def
= (νy)([u! y]j[y! u]), which immediately diverges when it is interrogated atu.

2.1. Types

Action Modes. The following pairs ofaction modes [11, 32] prescribe how each channel
is used in typed processes.

# Linear Input " Linear Output
! Server input ? Client request to !

“#” mode is associated with an input (e.g.x in x(y):P) and “!” mode is associated with
a replicated input (e.g.x in !x(y):P). “" ” (resp. “?”) mode is associated with an output
delivered to “#” (resp. “!”). For example, ifx(~y)P is composed withx(y):P, thenx in x(~y)P
has a" -mode, and if it is composed with !x(y):P, thenx has a ?-mode. We also use the
model which guarantees uncomposability of linear channel; for example, ifx:0 has a#-
mode andx has a"-mode, thenx:0 j x hasl-mode atx. Thel-mode atx indicates that the
processx:0 j x cannot be composed with any process that hasx as a free name.

We let p;q; : : : range over action modes. Ifp 6= l, we write p for thedual of p, a self-
inverse map on the action modes such that#=" and! = ?. The four modes correspond to
!1;?1; !ω and ?ω introduced in [11], except that the present modes indicate true linearity for
linear channels (i.e. input and output interact precisely once) rather than affinity (i.e. input
and output interact at most once) and lack of divergence for replicated channels.



Channel Types. Next we definechannel types by the following grammar. Belowp I

(resp.pO) denotes input (resp. output) modes.

τ ::= τ I j τO j l τ I ::= (~τO)
pI τO ::= (~τ I)

pO

The IO-alternation constraint (names used for input carry only output names and vice
versa) comes from game semantics [4, 34, 37]. This condition is not essential for SN but
simplifies presentation and proofs. For characterising sequential interaction, we may add
further constraints as in [10]; we do not do so here since the proof structure of strong nor-
malisability does not change by having this constraint. Letmd(τ) be the outermost mode
of τ; for l we setmd(l) = l. We define� as the least commutative partial operation on
channel types such that:

(1) τ� τ = l (md(τ) =#) (2) τ� τ = τ andτ� τ = τ (md(τ) = ?)

Intuitively, (1) says that once we compose input-output linear channels, the channel be-
comes uncomposable. (2) says that a server should be unique, but an arbitrary number
of clients can request interactions. For example, !x:0 j !x:0 is never typable because of
()! 6� ()! , while x j x is typable byx : ()?, and !x:0 j x j x by x : ()! . This partial algebra of
channel types ensures, among others, determinacy of computation in typable processes by
controlling their composability.

Action Types and their Algebra. Channel types are assigned to free names of a process
to specify possible usage of names. Action types, on the other hand, carry causality infor-
mation [66] and witness the real usage of channels. We first define action types. Anaction
type, denotedA;B; : : :, is a finite directed graph with nodes of the formx :τ, such that:

� no name occurs twice; and
� edges are of the formx :τ! y :τ 0 such that either (1)md(τ) =# andmd(τ 0) =" or

(2) md(τ) = ! andmd(τ 0) = ?.

We writex! y if x :τ! y :τ0 for someτ andτ 0. If x occurs inA and for noy we havey! x
then we sayx is active in A. jAj (resp.fn(A), active(A), md(A)) denotes the set of nodes
(resp. names, active names, modes) inA. We often writex :τ 2 A instead ofx :τ 2 jAj, and
write A(x) for the channel type assigned tox in A. A=~x is the result of taking off nodes
with names in~x from A. A
B is the graph union ofA andB, with the condition that
fn(A)\ fn(B) = /0. x : τ! A is a result of addingx : τ to A with an edge fromx : τ to all of
A’s active nodes.

It is sometimes useful to write down action types syntactically, in which case we generate
action types from the following grammar:

A ::= /0 j a :τ j A
B j a :τ! (b :τ1
b :τ2 � � �
b :τn)

where we assume, ina :τ! (b :τ1
b :τ2 � � �
b :τn), thatτ is of mode# or ! and, accord-
ingly, τi is of mode" or ?. We allow, inA
B, two different names with the same ?-type
to occur in bothA andB; otherwise we prohibit shared usage of names. We shall often use
this notation in examples.

The symmetric partial operator� on channel types is already given before. We extend
this operator to action types as follows. First, a symmetric relation� on action types is
defined as follows.A� B iff:
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FIG. 2. Composition of Action Types

� wheneverx :τ 2 A andx :τ 0 2 B, τ� τ0 is defined; and

� wheneverx1!x2; x2!x3; : : : ;! xn alternately inA andB (n� 2), we havex1 6= xn.

Next we extend� to action types.A�B is defined iffA � B and, if so, is given by the
following action type.

� x : τ 2 jA�Bj iff either (1) x 2 (fn(A)nfn(B))[ (fn(B)nfn(A)) andx : τ occurs inA or
B; or (2)x :τ 0 2 A andx :τ00 2 B andτ = τ0� τ00.
� x! y in A�B iff x = z1! z2; z2! z3; : : : ;zn�1! zn = y (n� 2) alternately inA and

B and, moreover, for now we havew! x and for now 0 we havey! w0 in eitherA or B.

We can easily check the following property of�. See Appendix A.2 for the proof.

Lemma 2.1. � on action types is a symmetric and associative partial operation

with identity /0.

We illustrate how this operator works via simple examples.

Example 2.1. Figure 2 shows two examples of composition between action types us-
ing �. In the linear case, ordering from/to nodeb disappears. On the other hand, in the
replicated case, we keep the original ordering because !b(~y):P remains persistent. The
same examples can also be written down syntactically, using the grammar of action types
introduced before as follows.

(1) a :(τ)#! (b :(τ)"
 c :(τ)") � b :(τ)#! (d :(τ)"
 e :(τ)")
= a :(τ)#! (c :(τ)"
d :(τ)"
 e :(τ)")
b :l

(2) a :(τ)! ! (b :(τ)?
 c :(τ)?) � b :(τ)! ! (d :(τ)?
 e :(τ)?)

= a :(τ)! ! (c :(τ)?
d :(τ)?
 e :(τ)?)
b :(τ)! ! (d :(τ)?
 e :(τ)?)

Note shared ?-channels are duplicated in the syntactic representation.



(Zero)

�

` 0 .

(Par)

` Pi . Ai (i =1;2)

A1� A2

`P1jP2 . A1�A2

(Res)

` P . Ax:τ

md(τ) 2 fl; !g

` (ν x :τ)P . A=x

(Weak)

` P . A-x

md(τ) 2 fl;?g

` P . A 
 x :τ

(In#)

` P .~y :~τ
 " A-x
?B-x

` x(~y :~τ):P . (x :(~τ)#!A)
B

(In! )

` P .~y :~τ
?A-x

`! x(~y :~τ):P . x :(~τ)!!A

(Out)

` P . A~y:~τ A�x :(~τ)po

` x(~y)P . A=~y� x :(~τ)po

FIG. 3. Linear Typing Rules

2.2. Linear Typing

We are now ready to present the typing rules for strong normalisability. The rules are given
in Figure 3, using sequent of the form.1 In the typing rules we use the following notations:

� A~y:~τ is A in which eachyi :τi in~y :~τ occurs.
� A-x is A such thatx 62 fn(A).
� pA meansA such thatmd(A) = p.

We sayP is typable under A, orP has action type A, if `P . A is derivable. Brief illustration
of each rule in Figure 3 follows.

(Zero) starts from the empty action type.
(Par) uses� and� for controlling composition (which in effect ensures both determi-

nacy and strong normalisability). For example, ifP has typex : () " andQ has typex : ()",
thenP jQ is not typable because()" 6� ()".

(Res) allows hiding of a name only when its action mode isl or ! (which intuitively
says that channels of modes", # or ? should always be compensated by their duals before
they are restricted).

(Weak) weakensl and ? since we allow the possibility of having no action at these
channels. Formally the weakening of these nodes is necessary for having subject reduction.

(In#) records the causality from linear input typex :(~τ)# to linear output types. The side
conditionA�x andB�x ensure linearity (i.e. unique occurrence) ofx. For IO-alternation,
we let all free names under an input be outputs [10, 11, 35, 69].

(In! ) records the causality from replicated input type to ?-types. The side condition
A�x is required to ensure acyclicity. Of course we cannot allow"-types in the body, for
otherwise linearity would be lost. For example, ifz is linear channel, then !x(~y):(z jQ)

should be untypable becausez is copied at each interaction.
(Out) does not suppress the body by prefix since output is asynchronous. Essentially the

rule composes the output prefix and the body in parallel. This rule can be understood by
translatingx(~y)P to (ν~y)(xh~yi jP): supposeP has a typeA. First we checkA � x : (~τ)po ,
then if defined, we hide~y from A� x :(~τ)po , whencex(~y)P has typeA=~y� x :(~τ)po .

1We prefer the format̀ P . A to A ` P. This is becauseA in ` P . A abstracts the behaviour ofP rather than
its environment. This point would be elucidated when we discuss translation ofλ-calculus in Section 5.



Example 2.2.

� A copy-cat copies all information from one channel to another [4, 37], one instance of

which appeared already. We show, step by step, how[u! x] τ def
=!u(a):x(b)b:a, the copy-cat

from u to x of typeτ = (()")! , can be typed:

(1) ` 0 . /0,
(2) ` a . a :()",
(3) ` b:a . b :()#! a :()",
(4) ` x(b)b:a . x :τ
a :()" (by b :()#! a :()"=b = a :()") and;
(5) `!u(a):x(b)b:a . u :τ! x :τ (by x :τ
a :()"=a = x :τ).

In this derivation, the length of paths in action types does not exceed 1 even when the
term gets bigger and bigger in size. In fact, we can show that all paths in action types of
derivable sequents have length 0 or 1.
� First we have:̀ a:(b jc) . a :()#! (b :()"
c :()") and` b:d . b :()#! d :()". Then

(1) ` a:(b j c) jb:d . a :()#! (c :()"
d :()")
b :l (by (Par)), and
(2) ` (ν b)(a:(b j c) jb:d) . a :()#! (c :()"
d :()") (by (Res)).

� The connection of two links (copy-cats) is typed as:

` [x! y]τ j [y! z]τ . (x :τ! z :τ)
 (y :τ! z :τ)

with x : τ ! y : τ� y : τ ! z : τ = x : τ ! z : τ. However,[x! x]τ and [x! y]τ j [y! x]τ

which represent cyclic forwarding are untypable by the side conditionA�x in (In! ) and by
definition of�, respectively.

Remark. In [10, 11, 32, 66] as well as in the early version of this paper [68], we used
the two-sided sequentΓ ` P . A whereΓ is a standard environment which maps channels
to pair types (of the formhτ;τi) andA records the action modes attached to names and
causality between names. For example, the copy cat in Example 2.2 (1) is typed as

y :hτ; τi;x :hτ; τi ` [x! y]τ . !x!?y

wherehτ; τi denotes a pair of input and output types. The typing in this format is similar
to those proposed in [17, 38] where types are CCS orπ-terms. Compared to [17, 38], the
syntax of action types of the present type discipline (in this format) is simpler since the
maximum path length is at most 1; hence an action type is essentially representable as
parallel composition of(!)a:(b1 j :::bn). The merit of two-sided sequent is its clear division
of behavioural constraints into channel types and causality. It may also be useful for type
inference. The merit of one-sided sequent is its conciseness and its (potential) faithfulness
to semantic content of typed processes. Single- and two-sided sequents result in equivalent
typability; the present paper uses the single-sided sequent because it gives a more concise
representation of semantic types.



2.3. Basic Properties of Typing System

Next we discuss basic properties of the typing system. We begin with name usage in typed
processes which form the basis of our later proof of strong normalisablity. Below the first
property says linear input/output channels and replicated channels occur precisely once in
a given process. Acyclicity, the second property, says that the typing rules ensure global
partial order between free names via compositional, local type-checking. This property
becomes crucial in our SN proof later.

Proposition 2.1. Let ` P . A.

(1) (linearity) If x :τ 2 A and md(τ) 2 f#;"; !g, x occurs precisely once in P.

(2) (acyclicity) G(P) denotes a directed graph such that; (i) nodes are fn(P); and
(ii) edges are given by: xy y iff P � (ν~z)(QjR) such that Q � x(~w):Q0 or Q �!x(~w):Q0

where y2 fn(Q0), x 62 f~zg and y 62 f~z~wg. A cyclein G(P) is a sequence of form xy y1:::y

yn y x (n� 0) with yi 6= x. Then G(P) has no cycle.

Proof. Both are by induction on the typing rules. (1) is mechanical. For (2), we show
that if ` P . A thenx : τ ! y : τ 0 in A iff xy :::y y is a maximal non-cycle inP. This is
proven simultaneously with: if there are name-disjointx1! x2; x3! x4; : : : ; x2n�1! x2n

then the corresponding maximal non-cycles do not overlap in names, again by induction
on the typing rules. The key case is(Par), the only rule which extends the chain. Assume
x1! x2; x2! x3; : : :xn�1! xn in A]B andx1! xn in A�B. By inductive hypothesis there
are the corresponding maximal non-cycles. In them, names used in different cycles inA
(resp. inB) never overlap with each other. Further, since intermediate names in these non-
cycles have either mode ! or model, these names do not overlap betweenA andB either.
Thus the result of connecting all these non-cycles again gives a non-cycle, which clearly

corresponds tox1! xn, as required.

Remark. In Proposition 2.1 (2), the notion of chain does not include the case where
an intermediate channel is restricted (unlike [1]). While such cases can be included, they
are not necessary in the proof of strong normalisability given later, cf. Lemma 3.3. Also
note that this property is deriveda posteriori by defining a composition operator on types,
in contrast to [58] which assumes this global conditiona priori.

Next we list basic properties of the reduction relation in typed processes. In (3) below and
henceforth we use the following notations.

� P + Q
def
, P�!� Q 6�!.

� P +
def
, 9Q:P + Q. Further,P *

def
, 8n 2 N: P�!n.

� SN(P)
def
, :P *.

� CSN(P)
def
, SN(P)^ (P + Q1;2) Q1� Q2).

Proposition 2.2. Let ` P . A.

(1) (subject reduction)If P�!� Q then ` Q . A.

(2) (strong confluence)If P�! Qi (i = 1;2), then either Q1 � Q2 or there exists R
s.t. Qi �! R (i = 1;2).



(3) (determinacy)Let ` P . A. (i) P �! P 0
and SN(P0) imply SN(P). (ii) P + Qi

(i = 1;2) imply Q1 � Q2. And (iii) P + , SN(P) , CSN(P).

Proof. (1) uses Lemma 2.1. See Appendix A.2. For (2), we note that the critical pairs
arise only when a replicated input is shared which does not change its shape. See Appendix

A.3. (3) is standard, cf. [1, 7, 36, 39], all using Proposition 2.2 (2).

3. STRONG NORMALISATION

This section proves the following result.

Theorem 3.1. (main theorem, strong normalisation) ` P . A ) CSN(P).

A few significant consequences of the theorem will be discussed in Sections 4, 5, 6 and
7. In the proof, we first introduce theextended reduction relation 7!, which eliminates
all cuts (mutually dual channels) in a typed process. Next we definesemantic types [[A]],
which are sets of typed terms that converge when composed with all necessary “resources”
(i.e. complementary processes). Finally we prove that each typable process is in the cor-
responding semantic type. This part is divided into two stages. We start with showing all
normal forms are in their semantic types. Then we establish that each typable process com-
bined with resources always reaches a normal form, which implies strong normalisability
of �!. In the second stage acyclicity of name ordering (cf. Proposition 2.1) becomes
crucial: we first define a reduction strategy based on name ordering, then we show any
parallel-composed normal forms always reach to a normal form by this strategy.

3.1. Extended Reductions

Definition 3.1. (extended reductions) We define7! l, 7!r and 7!g as the typed com-
patible relations on typed processes modulo� which are generated by the following rules.

(E1) C[x(~y)P]jx(~y):Q 7!l C[(ν~y)(PjQ)]

(E2) C[x(~y)P]j!x(~y):Q 7!r C[(ν~y)(PjQ)] j !x(~y):Q

(E3) (ν x)!x(~y):Q 7!g 0

Here we assume the term on the left-hand side in each rule is well-typed.7!
def
= (7!l [ 7!r

[ 7!g) is called theextended reduction relation. A process is inextended normal form if it
does not contain7!-redex.

The idea of7! is to capture known process-algebraic laws as one step reductions:7! l,
7!r and 7!g correspond to theβ/linear law [26, 27, 42, 66], the replication law [11, 53, 57]
and the garbage collection law, respectively. As an example of7!, we have:

!b(y):c(z)z:y j !c(z):z 7!r !b(y):(ν z)(z:y j z) j !c(z):z 7!l !b(y):y j !c(z):z

Immediately�!�7!. P +e, SNe(P) andCSNe(P) are given asP +, SN(P) andCSN(P)
in §. 2.3 using7! instead of�!. A 7!-redex is a pair of subterms which form a redex for
7! in a given term.

Proposition 3.1. Let all processes be typed below.

(1)If Γ ` P . A and P 7! P0 then Γ ` P0 . A.



(2) (CR) If P 7!� Qi then Qi 7!
� R (i = 1;2).

(3) (determinacy) If P 7! P0
and SNe(P0) then SNe(P). Thus P +e i� SNe(P) i�

CSNe(P).
(4) (convergence) (i)P jQ +e implies P +e and Q +e, (ii) if P +e, then (νx)P +e,

and (iii) P +e i� a(~x):P +e, (iv) P +e i� !a(~x):P +e, and (v) P +e i� a(~x)P +e.

Proof. See Appendix B.1. The proof of Church-Rosser proceeds by ‘postponing’ appli-

cations of7!g,

Note the Church-Rosser property is no longer one-step.
Let us say a processP is prime with subject x, or simply prime, if either P is input

with subjectx or P � x(y1::yn)Πi2IPi such that eachPi is prime with subjectyi where
Πi2IPi denotes then-ary parallel composition offPigi2I (if I = /0 thenΠi2IPi = 0). In
the following proofs we use a variant of the typing rule for output prefixes which is given
by adding the condition “P� ΠPi with Pi prime with subjectyi” in the premise of(Out) in
Figure 3. We call this system,alternative typing system. Note that, in the alternative typing
system, we can assume active names under an output prefix are bound by that prefix. With
the same proof as in Appendix D of [11], we can easily check:

Proposition 3.2. If `P . A is derivable in the system in Figure 3, then for some

P0� P we have ` P0 . A in the alternative typing system.

Proposition 3.2 says that we can assume, without loss of generality, that all prefixed
processes are primes whenever we are discussing properties invariant under� (such as
strong normalisability). For this reason the following convention does not lose generality
in our technical development.

Convention 3.1. Hereafter in this section we assume all typed processes are

derived in this alternative typing system.

When we work in the alternative typing system, we restrict� so that it is generated
without (S7) and(S9) in Figure 1 (for having closure of typability under� and�!).

Among others the alternative typing gives a simple inductive characterisation of ex-
tended normal forms which we shall use in the proof. Below and henceforth we writeNF e

for the set of extended normal forms:NFe
def
= fP j 9A: ` P . AandP 67!g.

Proposition 3.3. NFe coincides with, up to �, the set of the processes induc-

tively generated by the following rules:

� 0 2 NFe,
� If P 2 NFe thenx(~y :~τ):P; !x(~y :~τ):P; x(~y :~τ)P 2 NFe.
� If Pi 2 NFe (i 2 I 6= /0), Pi is a prime, andPijPj 67! (i 6= j) thenΠ i2IPi 2 NFe.

where we implicitly assume typability in each rule.

That is, a process is inNFe iff either: (1) it is inaction, (2) it is a prefix of an ENF,
or (3) n-ary parallel composition of ENFs without complementary input and output. Note
this also says that an ENF does not have substantial hiding (i.e. a hiding(ν x)P such that
x 2 fn(P)). For the proof of Proposition 3.3, the set thus generated is immediately a subset
of NFe by definition. For the reverse direction, we use induction on tying rules of the
(alternative) typing system, noting ifP 2 NFe then its subterms are also inNFe. For (Res),



assume(νx)P is derived. SinceP 2 NFe, if x has model, thisx is the result of weakening,
hence the hiding(νx) can be taken away by�. Furtherx cannot have mode ! since if so
it would result in a7!-redex (of rule(E3)). For (Par) assumeP1jP2 is derived. Since each
Pi 2 NFe, by induction it is (up to�) derived from one of the three rules above. If either
is derived from the first one we have nothing to prove. If not, then each is derived from
the second or the third rule (up to�), and they do not share a complementary channel by
P1jP2 2 NFe, thus as required.

3.2. Semantic Types

Semantic types are provably strongly normalising typed terms of some kind. We need
some preliminaries.

� cl(A)
def
= 
xi:τi2A;md(τi)2f";?g

xi :τi.

� Let A� B andA�B =C
~x :l wherel =2md(C). ThenA �B
def
= C.

By cl(A), called thecomplement of A, we indicate the (type of the) environment which
gives complementary linear and replicated inputs for all free output channels inA. A �B is
a “semantic version” ofA�B, where we forget inessentiall-channels. Hence by definition,
md(A�B) = !. We can now define semantic types.

Definition 3.2. Recall~y :~τ = y1 : τ1
 �� � 
 yn : τn. The semantic type [[A]] and the
prime semantic type hhx :τii are defined by the following rules:

[[A]]
def
= f ` P . A j 8Q 2 hhcl(A)ii: PjQ +e R 2 hhA � cl(A)iig

hhx :(~τ)#ii def
= fx(~y :~τ):P j P 2 [[~y :~τ]]g

hhx :(~τ)! ii
def
= f!x(~y :~τ):P j P 2 [[~y :~τ]]g

hh
i2Ixi :τiii
def
= fΠi2IPi j Pi 2 hhxi :τiii i 2 I g

We note the one-sided sequent offers a simpler form of semantic types than those orig-
inally defined in [68]. We can check:

Proposition 3.4. The rules of [[A]] and hh
i2Ixi :τiii are well-de�ned.

Proof. We formulate a notion of size of types, then verify that each semantic type

is defined by semantic types of strictly smaller size. Thesize of A is given by](A)
def
=

∑x2fn(A) A(x), where]((~τ)p)
def
= ∑i ](τi)+1 and](l) = 1. Write� for the ordering w.r.t.

the size of types thus defined. By](x :(~τ)p)�∑i ](~y :~τ), we know thathhx :(~τ)pii is defined
from types of strictly smaller size,[[yi : τi]]. The same holds forhh
ix : τiii. By definition
we have](A) � ](cl(A) �A) � ](cl(A)). Thus[[A]] is defined by prime semantic types of

the same or smaller size, which, in turn, are defined from those of strictly smaller size.

Some observations:

Lemma 3.1.

(1)If P 2 [[A]] then ` P . A and SNe(P).

(2) [[A]]� [[A
B]] and [[A]]� [[B]] with A� B. Also [[A
 x :l]] = [[A]].

(3)Let P 7! P0. Then P 2 [[A]] i� P0 2 [[A]].



(4)Let Pi 2 hhxi : τiii (1� i � n) such that x1; ::;xn are pairwise distinct. Then

Πi2IPi 2 [[
ixi :τi]].

Proof. For (1), the first half is immediate, while the latter half is because of Proposition
3.1 (3). The first half of (2) is direct from the definition. The latter half is because:` P .

A
 x :l with x 2 fn(P) implies that there always exists aP0 s.t. P 7!l P0 with ` P0 . A. For
(3), “then” is trivial from the definition of[[A]], while “if” is by CR of 7!. Finally, for (4),
we notemd(τi)2 f#; !g, which meanscl(
xi :τi) = /0. Hence we can takeQ� 0 in the defi-

nition of [[
ixi :τi]].

3.3. Main Proofs

This subsection presents the main arguments for strong normalisability. First we show
that all (typable) normal forms are semantically typed. The difficult case here is output
a(~x)P to replication !a(~x):Q because after reductiona(~x)P j !a(~x):Q�! (ν~x)(P jQ) j !a(~x):Q,
P may interact again with !a(~x):Q. Our formulation of semantic types based on7! makes
the inductive argument possible.

First we prove that a typable extended normal form is an element of a semantic type.

Lemma 3.2. If ` P . A and P 2 NFe then P 2 [[A]].

Proof. By Lemma 3.1 (2), it suffices to consider only minimum action types (i.e.fn(P)=
fn(A)). For brevity we writePhpxi (p 2 f! ;#g) for a process in normal form in a prime se-
mantic type. Also throughout the proof we setfn(A) = fa ig andfn(B) = fb jg. The proof
proceeds by the rule induction on the generation of` P . A with respect to the rules given
in Proposition 3.3. Below givenA =
 ixi :τi, we writeA for
ixi :τi.

(Inaction). By cl( /0) = /0, if Q 2 hhcl( /0)ii, thenQ � 0. Hence0jQ � 0 +e 0 2 hh /0ii with
cl( /0) � /0= /0, so that we have0 2 [[ /0]].
(Linear Input). AssumeP2 [[~y:~τ
"A
?B]]. We showx(~y:~τ):P2 [[(x:(~τ)#!"A)
?B]].
Let τ = (~τ)#. First we notecl((x :τ! A)
B) = A
B. Let Q 2 hhA
Bii andR 2 hh~y :~τii.
W.l.o.g. we assume

� Q� Q1jQ2 2 NFe such thatQ1� ΠiQ1ih#aii 2 hhAii andQ2� Π jQ2 jh!bji 2 hhBii; and

� R � R1 jR2 2 NFe such thatR1
def
= ΠkR1kh#zki 2 hh
zk=zk zk : τkii andR2

def
= ΠlR2lh!wli 2

hh
wl=yl wl :τlii with f~yg= f~z~wg.

By induction hypothesis,

Pj(QjR1 jR2) +e Q2jR2 2 hh
wl=yl wl :τl
Bii (5)

Hence by Proposition 3.1 (4-i), we knowPjQ + e P0jQ2 wherefn(P0) � f~yg. By the defi-
nition of 7! this impliesx(~y):PjQ +e x(~y):P0jQ2. We now showP0 2 [[~y :~τ]], which implies,
by definition of[[�]], x(~y):P0 2 hhx :τii. We already knowPjQjR1jR2 7!

� P0jQ2jR1jR2, while
by (5) above, we havePjQjR1jR2 7!

� P0jQ2jR1jR2 +e Q2jR2. Note thatfn(Q2) andfn(R)
are disjoint, hence there is no interaction betweenQ2 andP0jR1jR2. Now by CR of 7! we
knowP0jR1jR2 +e R2 2 hh
wl=yl wl :τlii. This showsP0 2 [[~y :~τ]], as required.

(Replicated Input). Similar to the previous case.

(Linear Output). Similar to and simpler than the next case.



(Replicated Output). AssumeP 2 [[C
x :(~τ)?]] with C=~y =" A
?B�x. Let τ = (~τ)?. We
have to showx(~y :~τ)P 2 [[A
B
x :τ]]. First we note thatcl(A
B
x :τ) = cl(C
x :τ) =
(A
B
 x : τ). AssumeQ 2 hhA
B
 x : τii. W.l.o.g. we can writeQ �!x(~y):Q 0

0 jQ1 jQ2

where !x(~y):Q0
0 2 hhx :τii, Q1� ΠiQ1ih#aii andQ2� Π jQ2 jh!bji. Then we have:

x(~y)P jQ �! (ν~y)(PjQ0
0) j !x(~y):Q

0
0 jQ1 jQ2:

By induction hypothesis,Pj!x(~y):Q 0
0jQ1jQ2 +e P0j!x(~y):Q0

0jQ2 such thatP0 2 [[~y :~τ]] with
md(τi) 2 f!;#g. Hence we can writeP0 � ΠkR1kh#zki jΠlR2lh!wli with f~yg= f~z~wg. We also
note thatQ0

0 2 hh
yi :τiii. Hence, by assumption,

(ν~y)(P0jQ0
0) 7!

�
l (ν~y)(ΠlR2lh!wli jQ00

0) 7!
� (ν~y)(ΠlR2lh!wli) 7!

�
g 0

Now by CR, we haveP jQ +e!x(~y):Q0
0 jQ2 2 hhB
 x :τii, as desired.

(Composition of Primes). GivenΠ i2IPi, assume by inductionPi 2 [[Ai]] (i2 I) andPijPj 67!

for i 6= j. Note that, for eachx 2 fn(Ai)\ fn(A j) (i 6= j) we havex : τ 2 jAij \ jA jj and
md(τ) =?. LetC = A1� ::�An andQ 2 hhcl(C)ii. W.l.o.g.,

Q � Π1�i�n(Π1�ki�mi Q
0
ki
h# aki i) j Π jQ

00
jh!bji

wherefakig1�ki�mi is the set of linear output channels inPi and fb jg is the union of
all replicated output channels fromA1; :::;An. By inductive hypothesis (the first part),
we havePijQ +e P0i jΠh 6=i(ΠkhQ0

kh
) with P0i 2 hhAi � cl(Ai)ii for eachi. Since only repli-

catedQ00
j is shared amongPi, by 
cl(Ai) � B and
(Ai � cl(Ai)) = C � cl(C), we have

ΠPi jQ +e ΠP0i jΠ jQ00
jh!bji2 hhC �cl(C)ii, as required. We have now exhausted all cases.

We use the following corollary of Lemma 3.2.

Corollary 3.1.

(1)Suppose fn(P) = /0 and P 7!� P0 2 [[ /0]]. Then P +e 0.

(2)If ` P . x :τ 2 NFe with md(τ) 2 f#; !g, then P 2 hhx :τii.

Proof. Both (1) and (2) are straightforward by the above lemma and Lemma 3.1 (3) and

(4), respectively.

We can now establish the main lemma.

Lemma 3.3. (main lemma)Suppose ` P . A. Then PjQ +e for each Q 2 [[cl(A)]].

Before giving the proof, we discuss its key ideas informally. The proof argues by
induction on the typing rules. Given Lemma 3.2, prefix and restriction become trivial,
but parallel composition causes a couple of problems. Even if !a:b and(a j !b:c) are in
NFe, their composition (with environment !c:0) allows reductions. How can we prove
termination? The key idea is to contract7!-redexes from the end of the order of names
cx bx a as:

!a:b ja j !b:c j !c:0 7!r !a:b ja j !b:0 j !c:0
7!r !a:0 ja j !b:0 j !c:0 7!r !a:0 j !b:0 j !c:0



and prove that this reduction strategy terminates due to acyclicity of names. This strategy
also works for the more complexπ-process which corresponds to the term in §.1 (4).

!a(x):(x j x) ja(c)c:b j !b:a(y0)!y0:y 7!2 !a(x):(x j x) j (νc)(!c:b j c j c) j !b:(νy0)(!y0:y j y0 j y0)

7!6 !a(x):(x j x) jb jb j !b:(y j y)

7!2 !a(x):(x j x) j y j y j y j y j !b:(y j y)

The proof follows. Below we say an output channelx 2 fn(A) is complemented by R if
` R . cl(A).

Proof. By rule induction on the typing rules.

Case (Zero). Supposè 0 . /0. Thencl( /0) = /0. Since for allQ 2 [[ /0]], we haveQ +e 0 by
Corollary 3.1 (1),0 jQ +e 0, as desired.

Case (Res). We do case analysis based on the mode of the hidden channel.

Subcase: ` (ν x)P . A is derived from ` P . A
 x :l. We show, for each complementing
processQ2 [[cl(A)]], we have(νx)PjQ+e. By induction hypothesis, for eachR2 [[cl(A
x:
l)]], we havePjR+e. Note thatcl(A
x:l)= cl(A) by definition. Hence, obviously, we have
PjQ +e for eachQ 2 [[cl(A)]]. This in turn implies(ν x)PjQ� (ν x)(PjQ) +e by Proposition
3.1 (4-ii), hence done.

Subcase: ` (νx)P . A is derived from ` P . B such that md(B(x)) = ! . Without loss of
generality, we setB = A0� x : τ! ?B0 andA0�?B0 = A. Again, by definition, we know
cl(A) = cl(B). The rest is similar to the above case.

Case (Weak). Trivial by inductive hypothesis.

Case (In#). Assumè x(~y):P . A is derived from` P .~y :~τ
 " A-x
0 
?B-x

0 with A = (x :
(~τ)#!A0)
B0. LetC =~y :~τ 
A0
B0. By induction hypothesis, for eachQ2 [[cl(C)]], we
haveP jQ +e, which impliesP +e P0 2 NFe by Proposition 3.1 (4-i). Then by construction
of NFe, we knowa(~y):P0 2 NFe, hence by Lemma 3.2, we knowa(~y):P 0 2 [[A]]. Now by
Lemma 3.1 (3), we havea(~y):P 2 [[A]]. Then by Lemma 3.1 (1),a(~y):P + e, as desired.

Case (In! ). Similar to (In#).

Case (Out). Assume` x(~y)P . A is derived from` P . C -x such thatactive(C) =~y and
C=~y = A. Let A(x) = τ.

Subcase: md(τ) =". By induction hypothesis, for eachQ2 [[cl(C)]], we haveP jQ+ e P0 jQ0

with P0 2 [[~y :~ρ]] whereτ = (~ρ)". AssumeR2 [[cl(A)]]. Then by the shape of the action type

and by definition, we can setR
def
= (x(~y):R0)jQ such thatx(~y):R0 2 [[x : τ]] andQ 2 [[cl(C)]].

We can now calculate:

x(~y)Pj(x(~y):R0)jQ 7!� x(~y)P0j(x(~y):R0)jQ0 7! (ν~y)(P0jR0)jQ0:

By definitionR0 2 [[~y :~ρ]], we haveP0jR0 +e. Also byQ2 [[cl(C)]], we haveQ0 +e. Note that
fn(Q0) is disjoint fromfn(P0jR0) so that there is no further+e from (ν~y)(P0jR0)jQ0. Hence
we have(ν~y)(P0jR0)jQ0 +e, as required.

Subcase: md(ρ) = ?. Similar to the subcase above.

Case (Par). Supposè Pi . Ai with i = 1;2 such thatA1 � A2 and letA = A1�A2. By

induction hypothesisP1 +e P01 andP2 +e P02. Let P
def
= P01jP

0
2. ThenP�Q1j::jQn where each

Qi is prime. Ifn = 0 there is nothing to prove. Assumen
 0 and letX
def
= f1;2; ::;ng. We



define the relation& onX as follows:

i& j
def
, 9x 2 fn(Qi); y 2 fn(Q j): xy y

For example, take the processP�!a:b ja j !b:c j !c:0 discussed just before the proof of this
lemma, then we have: 1& 3; 2& 1;3& 4. As in this example,&� never collapses two
names. In fact, ifi&+ j &+ i then there is a cycle of the formx y+ x in the sense of
Proposition 2.1 (2). Thus the relation&� is always a partial order onX . We now define a
series of setsX1;X2; :: as follows, writingmax(Y;�) for the set of maximal elements of a
partially ordered setY .

X1
def
= max(X ;&�) Xi+1

def
= max(Xn

S
1� j�iXi;&

�)

(as a example,X1 = 4;X2 = 3;X3 = 1;X4 = 2 in P). As X is finite,X1; ::;Xm partitionX for

somem. Now letSi
def
= Π j2XiQ j for 1� i�m. ThenP�Π1�i�mSi andSi 2 NFe for eachi.

Choose anyR 2 hhcl(A)ii. Note the seriesS1; ::;Sn is constructed so that outputs inSi+1 are
always complemented by inputs inSijSi�1j:::jS1jR. Now let` Si . Ci s.t. �1�i�mCi = A

and letEi
def
= cl(C1)�C1� ::�Ci�1 for 1� i � m. ThenEi = cl(Ci) for eachi. Note also

E1 = cl(A) andEm = cl(A)�A. We now show, by induction on 1� l � m+1, that for
someRl 2 hhElii

P jR 7!� Πl�i�mSi jRl :

This proves the lemma whenl = m+1. For the base case, takeR1� R. For the inductive
step, assumePjR 7!� Πl�i�mSijRl such thatRl 2 hhElii. By Lemma 3.2 and bySl 2 NFe

we know thatSl 2 [[Cl ]]. By El = cl(Cl) = cl(C1)�C1� :::�Cl�1, this impliesSl jRl +e R0 2

hhEl+1ii. We can now setR0 � Rl+1, as desired.

As an immediate corollary, we obtain:

Theorem 3.2. (strong normalisability in7!) ` P . A implies CSNe(P).

By �!�7! and Proposition 2.2 (3-iii), we have now established Theorem 3.1.

Remark. Theorem 3.1 (SN w.r.t.�!) arises as a corollary of Theorem 3.2 (SN w.r.t.
7!). This does not mean, however, Theorem 3.1 is of a secondary interest. For example,
the liveness property we establish in Section 7 is a direct consequence of Theorem 3.1
rather than that of Theorem 3.2. Further, when state is incorporated, the notion of extended
reduction itself becomes inapplicable as it is while Theorem 3.1 and the associated liveness
property still make sense. On the other hand, Theorem 3.2 has equational significance, as
we shall explore in the next sections.

4. CHARACTERISATION OF BISIMILARITY

As a significant consequence of strong normalisability of typed processes, this section
shows that weak bisimilarity has a finite axiomatisation in linear processes.

4.1. Typed Transitions and Bisimulations

Typed transitions describe the observations a typed observer can make of a typed pro-
cess. The typed transition relation is a proper subset of the untyped transition relation,



(In) x(~y):PA x(~y)
�! P~y:~τ
A=x (x :(~τ)# 2 A)

(Rep) !x(~y):PA x(~y)
�! !x(~y):PjP~y:~τ
A (x :(~τ)! 2 A)

(Out") x(~y)PA x(~y)
�! P~y:~τ
A=x (x :(~τ)" 2 A)

(Out?) x(~y)PA x(~y)
�! P~y:~τ
A (x :(~τ)? 2 A)

(�)
P01� P1 PA1

1
l
�! PA2

2 P2� P02

P01
A1 l
�! P02

A2

(Res)
PA1

1
l
�! PA2

2 x 62 n(l)

(ν x)PA1=x
1

l
�! (ν x)PA2=x

2

(Par)
PA1

1
l
�! PA2

2 A1�B allows l

P1jQA1�B l
�! P2jQA2�B

(Com)
PA1

1
l
�! PA2

2 QB1
1

l
�! QB2

2

P1jQ
A1�B1
1

τ
�! (νbn(l))(P2jQ2)

A2�B2

A allows l means (1) iffn(l) = l, thenl = τ and (2) ifmd(fn(l)) = !, thenl is not output.

FIG. 4. Typed Transition System

while not restrictingτ-actions: hence typed transitions restrict observability, not computa-
tion. Let the set ofaction labels l; l 0; : : : be given by the following grammar.

l ::= τ j x(~y) j x(~y)

fn(l) andbn(l) respectively denote free and bound names inl. n(l) is the set of names in

l. Using these labels, the typed transition, writtenPA l
�! QB wherePA is a shorthand for

` P . A, is defined as in Figure 4. Prefix rules are standard, except we do not allow a linear
input action and an output action when there is a complementary channel in the process.
For example, if a process hasx:l (resp.x:(~τ)! ) in its action type, then both input and output
actions (resp. output) atx should be excluded since such actions can never be observed in
a typed context (cf. Section 4.2 and Appendix E of [11]). Among the remaining rules, the
first rule says that the transition relation is defined on processes modulo�. Among the
remaining rules, the first rule says that the transition is defined on processes modulo�.
As we shall discuss later we can dispense with this rule by adding two transition rules for
output prefix. The induced transition is well-defined in the following sense.

Proposition 4.1. If ` P . A and PA l
�! QB

is derivable from Figure 4 then

` Q . B.

Proof. Simple inspection of each rule in Figure 4.

In the light of Proposition 4.1, we hereafter safely assume` P . A and` Q . B hold

whenever we writePA l
�! QB. We also observe:

Proposition 4.2. Let ` P . A. Then P�! Q i� PA τ
�! QA

.



Proof. Standard. In detail: By induction on generation rules of�!, it is easy to check
P �! Q implies PA τ

�! QA. For the other direction, we first show, by rule induction

on transition rules, that, ifx has mode# (resp. !),PA x(~y)
�! QA implies P � C[x(~y):P1]

and Q � C[P1] (resp. P � C[!x(~y):P1] and Q � C[!x(~y):P1jP1]) whereC[ ] is a reduc-

tion context. Similarly forPA x(~y)
�! QA. Using them we show, again by rule induction

on transition rules, thatPA τ
�! QA impliesP �C[C1[(!)x(~y):P1][C2[x(~y)P2]] whereC, C1

andC2 are reduction contexts. From this it is immediatePA τ
�! QA impliesP�! Q.

Finally we present the two rules for asynchronous output which allow us to dispense with
(�) from Figure 4, which becomes useful in our proof later.

PA1
1

l
�! PA2

2 n(l)\f~yg= /0

x(~y)P A1=~y�x:(~τ)p

1
l
�! x(~y)PA2=~y�x:(~τ)p

2

PA1
1

x(~z)
�! PA2

2

x(~y)PA1=~y�x:(~τ)p

1
τ
�! (ν~y)P2f~y=~zgA2=~z

(6)

These rules materialise asynchronous nature of the output in transition (the second rule
needs renaming to avoid clash of bound names). The transition system which adds the
rules in (6) to the rules in Figure 4 replacing� in (�) by�α, is calledsyntactic transition
system. The transition system which simply replaces� in (�) by �α from the rules in
Figure 4, is calledprime syntactic transition system. We observe:

Proposition 4.3.

(1) If PA l
�! QB in the syntactic transition system, so is in the original system.

(2) If PA l
�! QB in the original transition system, then PA l

�! QB
0 such that Q0 � Q in

the syntactic transition system.

(3)Let PA be derived under Convention 3.1. Then PA l
�! QB in the original transition

system iff PA l
�! QB

0 such that Q0� Q in the prime syntactic transition system.

Proof. For (1), we show that the added rules are derivable from the rules in Figure 4,

which is immediate. For (2) we first show, in the syntactic transition, ifP A
0

l
�!QB

0 andP�

P0 thenPA l
�!QB such thatQ�Q0. The proof is standard, using rule induction on the syn-

tactic transition system together with inspection of the structure of processes. From this it is
easy to check that the given statement holds, this time by rule induction on the original tran-
sition system. Finally for (3) “if” is by (1) while “only if” is by (2), noting, under Conven-
tion 3.1, the transition induced by syntactic transition system and the one induced by prime

syntactic transition system is identical.

Note (3) indicates that the prime syntactic transition is precisely the transition which cor-
responds to Convention 3.1.

Based on typed transition, we define a bisimulation. Let us say a relation over typed
processes istyped if it only relates processes with identical action type. A typed relation is
a typed congruence when it is a typed equivalence which contains� and which is closed

under each typing rule (allowing, as a result, weakening of bases, cf. [11, 53]). Below
l̂

=)

denotes the standard abstracted transition.

Definition 4.1. (typed bisimulation) A typed relationR is aweak bisimulation, or a

bisimulation, if PA1
1 RQA1

1 implies: wheneverPA1
1

l
�! PA2

2 then there is a typed transition



sequenceQA1
1

l̂
=) QA2

2 such thatPA2
2 RQA2

2 , as well as the symmetric case. By replacing
l̂

=) with
l
�!, we obtain astrong bisimulation. If PA RQA for some weak (resp. strong)

bisimulationR, we writePA � QA (resp.PA � QA).

We often omitA from PA, writing P� Q, if A is clear from the context. By definition,
� (resp.�) is the union of all weak bisimulations (resp. strong bisimulations), which
is in fact the largest weak (resp. strong) bisimulation, and is calledweak (resp.strong)
bisimilarity. The following technical development focusses on weak bisimilarity, which
we hereafter simply callbisimilarity. � is clearly an equivalence relation. Since� is
easily a bisimulation, by Proposition 4.3, it is enough to use the syntactic transition to
deriveP� Q (and the prime one if we are under Convention 3.1).

4.2. Axioms

Let ℑ (ℑ 0,...) denote a formal (equational) theory over typed processes, which is a set of
axioms and rules with formulae of the formPA = QA. In PA = QA, PA andQA should be
well-typed: we shall however not mention types unless they are necessary, writingP = Q.
If P = Q is provable inℑ , we writeℑ ` P = Q. ℑ + ℑ 0 is the result of adding the axioms
and rules from two theories. We extend this to an arbitrary family of theories.

Axioms I: (Pre)Congruence Rules. We consider the standard equivalence rules and clo-
sure under well-typed contexts, identifying twoα-equivalent terms. This theory is denoted
ℑ c. We also define its subtheoryℑ p by removing(C2) from ℑ c.

(C1) P�α Q ) P = Q (C2) P = Q ) Q = P

(C3) P = Q; Q = R ) P = R

(C4) P = Q ) P jR = Q jR (C5) P = Q ) R jP = R jQ

(C6) P = Q ) (ν x)P = (ν x)Q (C7) P = Q ) x(~y):P = x(~y):Q

(C8) P = Q ) x(~y)P = x(~y)Q (C9) P = Q ) !x(~y):P =!x(~y):Q

Axioms II: Structural Rules. Let ℑ s denote the set of rules derived from the axioms
(S1–9) in Figure 1. HenceP� Q stands forℑ c + ℑ s ` P = Q.

Axioms III: Conversion Rules. Convertibility is induced by the extended reduction re-
lation, taking(E1–3) from Definition 3.1 as rules.ℑ e denotes the theory. NoteP 7! Q iff
ℑ p + ℑ s + ℑ e ` P = Q.

Definition 4.2. The typed congruence ! is defined by the following logical equiv-
alence:P ! Q iff ℑ c + ℑ s + ℑ e ` P = Q.

In other words, ! is the symmetric and transitive closure of7! [ �.

4.3. Characterisation and its Proof

We now show that ! completely characterises bisimilarity.

Theorem 4.1. (characterisation of �)  ! = �.

We prove Theorem 4.1 by showing two inclusions, (1) ! � � and (2) ! � �. We
call the first inclusionsoundness and the second onecompleteness. For soundness, we first
show� is a typed congruence.



Proposition 4.4. � is a typed congruence.

Proof. Using the characterisation in Proposition 4.3 (1)(2), it is enough to show�

derived using the syntactic transition is a typed congruence. Input prefixes, parallel com-

position and restriction are entirely standard, cf. [46]. For output prefix we defineR def
=

R1[R2[R3 where:

(1) R1
def
=�;

(2) R2
def
= fhx(~y)P1;x(~y)P2i j P1� P2g; and

(3) R3
def
= fh(ν~y)P1f~y=~zg;(ν~y)P2f~y=~zgi j P1� P2g.

In (3) we assume the mentioned substitution is well-typed. It is easy to check when-
ever PR1 [R2Q its derivatives are related byR. For R3 we show this relation coin-
cides with�. Clearly R3 �� (let ~y be the empty string). For the reverse inclusion,
underP1 � P2 we have: (ν~y)P1f~y=~zg � (ν~y)(P1jΠ[zi ! yi]) � (ν~y)(P2jΠ[zi ! yi]) �

(ν~y)P2f~y=~zg, where the first and the last equations are by the copy-cat law (see Sec-
tion 6 for the definition of copycat together with the copy-cat law), while the second
equation is by closure of� under parallel composition and hiding. ThusPR 3Q im-

pliesP� Q, that isR3��. This showsR is indeed a bisimulation, hence as required.

Next we show:

Proposition 4.5. If ℑ e ` P = Q then P� Q.

Proof. See Appendix C.1.

Since ! is the congruent closure ofℑ e, by Propositions 4.4 and 4.5 we conclude:

Corollary 4.1.  ! � �.

For the reverse inclusion, we reduce the equality by ! to those over normal forms.

Definition 4.3. Let us writeP �0 Q for ℑ c + f(S2,S3,S5–9)g ` P = Q andP B Q
for ℑ p + ℑ s ` P = Q (noteB is aprecongruence). We sayP is inB-normal form if: (1)
P 2 NFe and (2)PB Q impliesP�0 Q.

NoteP�0 Q means thatP andQ are essentially identical without changing the size of
terms. ForB-normal forms we observe:

Lemma 4.1.

(1) A process in NFe is a B-normal form iff it is without name hiding and it does not
contain 0 as its proper subterm.

(2) If ` P.A then there is a B-normal form Q such that P 7!� Q.
(3)The set of B-normal forms coincide with those processes generated by the rules in

Proposition 3.3.
(4) If ` P.A and P is a B-normal form then P� 0 P#jP"jP! jP? where:

P# = Πi2I#yi(~zi):Pi P" = Πi2I"yi(~zi)Pi

P! = Πi2I! !yi(~zi):Pi P? = Πi2I?yi(~zi)Pi

Here I#; I"; I! ; I? partition the finite set I such that (i) for all i; j 2 In I?: i 6= j implies xi 6= x j,
(ii) for all i 2 I! [ I? and all j 2 I#[ I": xi 6= x j and (iii) Pi is inB-normal form for all i 2 I.
Furthermore, P#, P", P! and P? are unique up to �0.



(5) If ` P.A is a B-normal form and P
l
�! Q is a transition, then l 6= τ.

Proof. See Appendix C.2.

Let P be aB-normal form. ThenP � 0 P#jP"jP! jP? by Lemma 4.1 (4). The right-hand
side of this equation is callednormal form decomposition of P, with P#, P", P! andP?

being, respectively, its#-component, "-component !-component and ?-component.

Lemma 4.2. Let Pi
#
jPi
"
jPi

! jP
i
? be a normal form decomposition Pi

(i = 1;2).

(1) Assume that P1
#
= Πm

j=1yi(~zi):P1
j and P2

#
= Πn

j=1ai(~bi):P2
j . Then P1

#
� P2

#
i�

m = n and there is a permutation σ of f1; : : : ;ng such that yi(~zi):P1
i � aσ(i)( ~bσ(i)):P

2
σ(i)

for all i. Similarly for P1;2
"

, P1;2
! and P1;2

? .

(2) P1� P2
i� P1

#
� P2

#
, P1

"
� P2

"
, P1

! � P2
! and P1

? � P2
? .

Proof. For (1), the cases forP1;2
#

, P1;2
"

andP1;2
! are immediate by considering traces.

ForP1;2
? , we proceed by contradiction. Assume w.l.o.g.P 1

? �
0 x(~y)P1jx(~z)P2jP0 while P2

? �
0

x(~a)QjQ0 such that neitherP0 norQ0 containx as an active name. By Lemma 3.2, all active
names inP1;P2 andQ are inf~yg, f~zg, andf~ag, respectively. Typing then ensures that all
these active names are inputs. By Lemma 4.1 (5), no process inB-normal form can have

aτ-transition. HenceP1
? andP2

? cannot have the same set of traces. (2) follows from (1).

We now prove the key lemma for completeness. For (2). we can indeed showB-normal
forms are a class of processes where�,�,�0 and� all coincide.

Lemma 4.3. Let P and Q be B-normal forms. Then P� Q i� P�0 Q.

Proof. The size of P, size(P), is the number of constructors inP. size(P) is invariant
under�0. By induction onsize(P)+ size(Q) we show���0. The base case,size(P)+
size(Q) = 2, is immediate. The inductive step uses Lemma 4.2 (1,2) to reduce the argu-
ment to each prime component for which, after stripping off the common prefix, we can

always use induction. Since�0 is easily a bisimulation we also have�0��, hence done.

We can now conclude the proof of Theorem 4.1 by establishing the completeness, !�

�, and combining it with Proposition 4.1. AssumeP� Q. By Lemma 4.1 (2) we can find
B-normal formsPnf andQnf of P andQ, respectively, such thatP 7!� Pnf andQ 7!� Qnf. By
Corollary 4.1, we knowPnf � Qnf. But Lemma 4.3 implies that� restricted toB-normal
forms is contained in !, henceP 7!� Pnf !Qnf andQ 7!� Qnf which meansP ! Q, as
required.

5. FULLY ABSTRACT EMBEDDING OF λ!;�;+

5.1. The Functional Calculus

We use the simply typedλ-calculus with products and sums (writtenλ!;�;+ from now on)
as a testbed for the expressiveness of the presented calculus, establishing its fully abstract
embeddability in theπ-calculus. We have chosenλ!;�;+ because of its rich type structures
and non-trivial equational theory. For simplicity we omit base types other than unit. We
review the syntax of types and terms below, withi ranging overf1;2g.

T ::= unit j T1! T2 j T1�T2 j T1+T2

M ::= x j () j λx :T:M j hM;Ni j πi(M) j ini(M) j case L of fini(xi : Ti):Migi2f1;2g



[Var] Γ;x :T ` x : T [Unit] Γ ` () : unit

[Lam]
Γ;x :T `M : T 0

Γ ` λx : T:M : T)T 0 [App] Γ `M : T)T 0 Γ ` N : T
Γ `MN : T 0

[Pair]
Γ `Mi : Ti (i = 1;2)

Γ ` hM1;M2i : T1�T2
[Proj] Γ `M :T1�T2

Γ ` πi(M) : Ti (i = 1;2)

[Inl] Γ `M : T1
Γ ` inl(M) : T1+T2

[Case] Γ `M :T1+T2 Γ;xi :Ti `Mi :T 0

Γ ` case M of fini(xi : Ti):Mig : T 0

FIG. 5. Typing Rules forλ!;�;+

We writeM �α N for α-equality on terms. A term isclosed if no variables occur free. The
typing rules are standard, which we list in Figure 5 (cf. [24, 52]). We writeE `M : T when
a termM is typable with typeT under a baseE. We writeC[ ]T :T 0 for a (typed) context of
typeT 0 with one hole of typeT . We often omit type annotations from terms and contexts.

The reduction relation, written , is the least compatible relation which includes:

(β) (λx:M)N  MfN=xg

(proji) πihM1;M2i  Mi

(casei) case ini(L) of fini(xi):Nig  NifL=xig

Other possible notions of reduction include commuting conversions andη-rules [22]. We
take the minimum meaningful reduction for simplicity, but the main technical results in
this section hold for all reasonable variations (this is essentially because normal forms of
boolean observables are invariant under these rules). We writeM + N whenM � N and
N 6 . A normal form is a term which has no further reductions. By easy induction on the
structure of terms, a closed normal form of typeT ! T 0 (resp.T �T 0, T +T 0) has shape
λx:M (resp.hM;Ni, ini(M)).

Equality in λ!;�;+ is not as simple as it may look, due to the existence of sums [22].
To have a semantically meaningful equality, we use observation of “values”, cf. [52]. Let

true
def
= in1(()) andfalse

def
= in2(()), both of typeB λ

def
= unit+unit. ThenE `M �=λ N : T

when, for each contextC[ ]T : B λ such thatC[M] andC[N] are closed, we have(C[M] +

true , C[N] + true). The same equality is obtained by taking observability at each sum
type, justifying all commuting conversions andη-rules.

5.2. Extension with Branching and Selection

Before encodingλ!;�;+, we extend the typedπ-calculus to its full syntax [11] by incorpo-
rating branching and selection. Branching is necessary to represent sums inλ !;�;+ and is
also used for defining a reduction-based typed congruence [33].

P ::= � � � j x[& i(~yi):Pi] j !x[& i(~yi):Pi] j xini(~y)P

τI ::= � � � j [& i~τi]
# j [& i~τi]

! τO ::= � � � j [�i~τi]
" j [�i~τi]

?

We often omit the indexing setI (which should be either countable or finite) ofx[& i2I(~yi):Pi].
x[& i2I(~yi):Pi] is calledbranching, while xini(~y :~τ)P is called selection. Similarly for



(Typing Rules)

(Bra! )

` Pi .~yi :~τi
?A-x

`! x[&(~yi):Pi] . x : [& i~τi]
!!A

(Sel)

` P . A~y:~τ j A�x : [�i~τi]
po

` xin j(~y)P . A=~y� x : [�i~τi]
po

(Labelled Transition Rules)

x[& i~yi:Pi]
A xini(~yi)

�! P~yi:~τi
A=x
i (x : [&~τi]

# 2 A)

!x[& i~yi:Pi]
A xini(~yi)

�! !x[& i~yi:Pi]jP
~yi:~τi
A
i (x : [&~τi]

! 2 A)

xini(~y)PA xini(~y)
�! P~y:~τi
A=x

(x : [�i~τi]
" 2 A)

xini(~y)PA xini(~y)
�! P~y:~τi
A

(x : [�i~τi]
? 2 A)

FIG. 6. Typing and Transition Rules for Branching and Selection

[& i~τi]
p and [�i~τi]

p. � is defined as in Figure 1. The reduction for branching involves
selection of one branch, discarding the remaining ones, as well as name passing.

x[& i(~yi):Pi] j xin j(~y j)�Q�! (ν~y j)(Pj jQ)

! x[& i(~yi):Pi] j xin j(~y j)Q�!! x[& i(~yi):Pi]j(ν~y j)(PjjQ)

As an example, anatural number agent, [[n]]u
def
=!u(c)cinn, acts as a server which neces-

sarily returns a fixed answer,n; see [11, 35, 69] for further examples of reductions.
The typing rules for branching/selection are given in Figure 6.7! is extended as in

Definition 3.1. Below in(E4) we assumen holes exhaust all occurrences of (linear)x; we
extend(E1) in a similar way, reducingn-holes simultaneously.

(E4) C[xin j1(~y j1)P]::[xin jn(~y jn)P]jx[& i(~yi):Qi] 7!l C[(ν~y j1)(PjQ j1)]::[(ν~y jn)(PjQ jn)]

(E5) C[xin j(~y j)P]j!x[& i(~yi):Qi] 7!r C[(ν~y j)(PjQ j)]j!x[& i(~yi):Qi]

(E6) (νx)!x[(~y)i:Qi] 7!g 0

The typed transition is defined by extending the set of labels withxin i(~y) andxini(~y) and
by adding the rules in Figure 6. The weak bisimilarity� is then defined by the same clause
as in Definition 4.1 in Section 4 using the extended transition relation.

The technical development for the full calculus is identical with that for the unary cal-
culus in the preceding sections, except for the following minor changes:

� In Proposition 2.1: In (1), “precisely once” for a"-channel becomes, under a branch-
ing input, “precisely once in each branch”. In (2), we extend the relationy for branching
inputs and outputs.

� In Proposition 3.3 we add the following clauses to the generation rules ofNF e: if
Pi 2 NFe thenx[(~yi):Pi] and !x[(~y)i:P] are inNFe; if P 2 NFe thenxini(~y)P 2 NFe.



� In the definition of semantic types (Definition 3.2), we add:

hhx : [& i~τi]
#ii

def
= fx[& i(~y :~τi):Pi] j Pi 2 [[~y :~τi]]g

hhx : [& i~τi]
! ii

def
= f!x[& i(~y :~τi):Pi] j Pi 2 [[~y :~τi]]g

With these changes, all arguments and results for the unary calculus carry over to the full
syntax. We summarise the main syntactic properties below.

Proposition 5.1.

(1) (reduction)If ` P . A, then (i) P�! Q implies ` Q . A and (ii) P�! Q 1;2 implies
either Q1 � Q2 or Q1;2�! R for some R, and (iii) CSN(P).

(2) (extended reduction)If ` P . A, then (i) P 7! Q implies ` Q . A and (ii) P 7! Q 1;2

implies Q1;2 7!
� R for some R, and (iii) CSNe(P).

(3) (finite axiomatisation)Let != (7! [ �)�. Then ! = �.

Branching allows us to define contextual equality in the strongly normalising processes,
using observables at non-trivial branching types. Formally thecontextual congruence �= is
the maximum typed congruence over (extended) processes satisfying the following condi-
tion. LetB = [�i=1;2 ]

" below.

If P1 +
i
x andPx:B �= Qx:B , thenQ +i

x (i = 1;2)

whereP +i
x meansP �!� xini(~y)P0 andPx:B �= Qx:B relateP andQ typed underx :B . As

in bisimilarity, we sometimes simply writeP �= Q for PA �= QA. We observe:

Proposition 5.2.

(1) (maximal consistency)�= is maximally consistent in the sense that the only

typed congruence which strictly includes �= is the universal relation.

(2) (context lemma) Let̀ P1;2 . A. ThenP1
�= P2 if and only if, for each̀ R . A
x :B ,

(ν fn(A))(P1jR) +i
x iff (ν fn(A))(P2jR) +i

x.

(3) (innocuous actions)If ` P . A and md(A) = ? then PA �= 0A
.

Proof. For (1), letR be the result of adding an equation to�=. By the definition of�=
there arePx:BRQx:B such thatP +1

x andQ +2
x . Take anỳ R1;2. " ?A (with x 62 fn(A)). Then

S
def
= x[:R1& :R2] is typable. By the congruence ofR we haveSjP1RSjP2. Since�!2�=

(cf. Proposition 5.1) this impliesR1RR2. From suchR1;2 we can build any prime/non-
prime terms, by which we conclude the universality ofR. (2) is standard: for reference

Appendix D.1 lists the proof. For (3), supposeP
def
= x(~y)P0 has type ?A and take the context

C[ ] from A to u : B . By (2) above we can setC[ ] has form(ν~w)(SjRj[ ]) whereR is the
composition of replicated processes compensatingA. Sinceu cannot occur inR it occurs
in S, whose behaviour atu does not depend onP in C[P], i.e. C[P] + i

u iff C[0] +i
u, hence

P�= 0. (An alternative concise proof of (3) using a refined bisimulation is given in [69].)

�= and� are related in the following way.

Proposition 5.3. � ( �=.



Proof. By Proposition 4.4,� is a typed congruence and it respects convergence atB by
definition. Since�= is the maximum such this shows���=. For strictness, takèx . x :()?.

By Proposition 5.2 (3) this process is�=-equal to0 but clearlyx 6� 0.

Finally we list processes of specific form used in the encoding later, calledcopycat. A
copy-cat dynamically links two locations, which has an origin inforwarder in actors as
well as in game semantics.

[x! x0](~τ)
# def

= x(~y):x0(~y0)Πi[y0i! yi]
τi

[x! x0](~τ)
! def

= !x(~y):x0(~y0)Πi[y0i! yi]
τi

[x! x0][& i~τi]
# def

= x[& i(~yi):x0ini(~y0i)Πi j[y0i j! yi j]
τi j ]

[x! x0][& i~τi]
! def

= !x[& i(~yi):x0ini(~y0i)Πi j[y0i j! yi j]
τi j ]

The following property of copy-cats is used later.

Proposition 5.4.

(1)` [x! y]τ . x :τ! (y :τ
?A) for each input type τ and ?A with x;y 62 fn(A).
(2)(νy)(Pj[y! x]τ) 7!� Pfx=yg assuming typability.

Proof. See Appendix D.2.

5.3. Sequentiality

One of the basic notions we shall use for the proof of the full abstraction, issequentiality.
“Sequential” in this context means that processes have at most one active thread: The
combination with the sequential type discipline in [10] can realise this behaviour in linear
processes. While the full abstraction result is established in the linearπ-calculus without
the sequentiality constraint, sequentiality plays a crucial role in several arguments. Below
we restrict the linearπ-calculus to its sequential subsystem following [11] and study its
basic properties used in the subsequent proofs.

The first constraint on the linear typing is on channel types.

Definition 5.1. The set ofsequential channel types is generated by:

� (τ1::τn)
# is sequential if, for each 1� i� n, τ i is sequential andmd(τ i) = ?; and

� (τ1::τn)
! is sequential if, for each 1� i� n, τ i is sequential and, for each 1� i� n�1,

md(τi) = ? whilemd(τn) = ".

Dually for output types and similarly for branching/selection types (imposing the same
constraint for each summand).

The sequent for sequential typing has the form`φ P.A whereφ2 fI; Og is anIO-mode,
which ensuresP contains at most one active thread.φobeys the partial algebraI�I= I and
I� O = O� I = O. Whenφ1�φ2 is defined (that is, if they are not simultaneously output),
then we writeφ1� φ2.

The typing rules are given in Figure 7 (the sequential version of(Bra) and(Sel) follow
(In) and (Out)). The use of IO-modes in in(Par) ensures single threading sinceO� O is
undefined. An output (resp. input) can only prefix a body in input (resp. output) mode,
resulting in output (resp. input) mode.0 starts fromI. Other rules,(Res,Weak), do not
change IO-modes. For this system we observe:



(Zero)

�

`I 0.

(Par)

`φi Pi .Ai (i =1;2)

A1� A2 φ1 � φ2

`φ1�φ2P1jP2.A1�A2

(Res)

`φ P.Ax:τ

md(τ) 2 fl; !g

`φ (νx :τ)P .A=x

(Weak)

`φ P.A-x

md(τ) 2 fl;?g

`φ P.A 
 x :τ

(In#)

`O P.~y :~τ
 " A-x
?B-x

`I x(~y :~τ):P. (x :(~τ)#!A)
B

(In! )

`O P.~y :~τ
?A-x

`I! x(~y :~τ):P. x :(~τ)!!A

(Out)

`I P.A~y:~τ A�x :(~τ)po

`O x(~y)P.A=~y� x :(~τ)po

FIG. 7. Linear Sequential Typing

Proposition 5.5.

(1) If `φ P.A and P�!Q then `φ Q.A. Similarly if `φ P.A and P 7!Q then `φ Q.A.

(2) If `φ P.A and P�! Q1;2 then Q1� Q2.

(3) If `φ P.A then CSN(P) and CSNe(P).

Proof. (1) follows the proof of Proposition 2.2 (presented in Appendix A.2 using A.4),
incorporating IO-modes in addition. (2) is because there is at most one active output

in a sequential process. (3) is immediate since`φ P.A implies` P . A by definition.

Remark. Proposition 5.5 (2) indicates the sequential nature of dynamics in sequential
linear processes: in spite of this,7! gives a way of computing normal forms of sequential
processes by parallel reduction.

A significant property is that linear processes typed under sequential channel types are
already sequential from a semantic viewpoint.

Definition 5.2. An action typeA is sequential if all channel types used inA are se-
quential and, moreover, it does not contain two linear output channels.

Having at most one linear output in an action type (cf. [11, Appendix F]) makes it
possible to have inductive definition of sequentialisation, given next.

Proposition 5.6. (sequentialisation)Given `P . A such that A is sequential, P2
NFe and P does not contain hiding, de�ne P]

by the following induction, implicitly

assuming typability under sequential A in each case.

� 0] def
= 0 and (PjQ)]

def
= P]jQ]

.

� (x(~y):P)]
def
= x(~y):P]

and (!x(~y):P)]
def
=!x(~y):P]

, similarly for branching.

�(x(~y)P)]
def
= x(~y)P]

if "2md(A), (x(~y)P)]
def
= 0 if "62 md(A), similarly for selection.

Then we have `φ P] .A for some φ and, moreover, P�= P]
.

Proof. We first show, by rule induction,̀φ P] .A for someφwhenever̀ P . A for P 2
NFe and sequentialA. W.l.o.g. we work under Convention 3.1. IfP= 0 then` 0 . ?A hence



`I 0.A, as required. ForP = P1jP2, let`φi Pi .Ai (i = 1;2) such thatA =A1�A2. Suppose

φ1 = φ2 = O. SinceP 2 NFe, P]
1 andP]

2 respectively contains prime outputsS ]
1 andS]

2 as

factors of parallel composition. ByA being sequential, one ofS ]
1 andS]

2 has only ?-mode
channels (note a prime output does not contain input subjects), which is impossible by con-
struction. Thus one ofφ1 andφ2 is I, from which sequential typability is immediate. The
remaining cases are direct from the induction hypothesis. ForP �= P], the only non-trivial

case is(x(~y)P)]
def
= 0 when"62md(A), for which we use Proposition 5.2 (3) . The rest is di-

rect from induction hypothesis.

Using sequentialisation we establish a refined context lemma. We only present the result
for processes of the form needed for our later result.

Lemma 5.1. (sequential context lemma)Let `P1;2 . x:τ! ?A (with md(τ) = !) such
that τ and A are sequential. Then P1�= P2 i� for each `O T .x :τ
u :B and for each

`I R.A we have (ν~w)(P1jRjS1) +
i
u , (ν~w)(P2jRjS2) +

i
u where fn(A) = f~wg.

Proof. By Proposition 5.2 (2) and by absorbing/garbage collecting processes using
extended reduction, we knowP1 �= P2 iff for each` T . x : τ
 u : B and for each̀ R .

A. By ���= we know P 7! P0 implies P �= P0, so that we can takeR and T to be in

NFe. Using Proposition 5.6 we can further reduceR andT to be sequential processes.

5.4. Encoding and Soundness

The encoding ofλ!;�;+ is given in Figure 8. The encoding of aλ!;�;+-typeT , writtenT Æ,
mapsT to a replicated type. The encoding of aλ!;�;+-termE `M : T , written[[E `M : T ]]

or [[M : T ]] for brevity, adapts Milner’s call-by-name encoding [49] to our type structure by
adding an indirection at eachλ-abstraction. The encoding of terms follows the encoding
of types, and uses type information on variables in aλ-term. The encoding of a baseE,
written EÆ, maps eachx : T in E to x : T Æ, dualising the mode. This can be understood as
follows: if we have aλ!;�;+-termx :T `M :T 0. The corresponding process interacts with
a datum of typeT Æ in the environment, and produces a datum of typeT 0Æ. Thus atx, the
process itself should have the type which complementsT Æ, that isT Æ.

Proposition 5.7. For each T , T Æ
is a sequential unary channel type of mode ! .

Proof. By rule induction of the map( )Æ. The base case is()Æ = (()")! , which is
immediate. For induction,(T1)T2)

Æ = (T Æ
1 (T

Æ
2 )

")! is sequential iffT Æ
1;2 are sequential and

have mode !, which is the induction hypothesis. Similarly for(T1�T2)
Æ and(T1+T2)

Æ.

Proposition 5.8. (syntactic soundness)If E `M : T then ` [[M : T ]]u . u:T Æ! EÆ
.

Proof. See Appendix D.3.

Note also[[M : T ]]u has always the shape !u(~z):P. Further[[M : T ]]u is sequentially ty-
pable, though we do not use this property in our subsequent proof. This concludes the
verification of static properties of the encoding.

For dynamics, we obtain:

Proposition 5.9. If E `M : T and M M0
then [[M]]u 7!

+ [[M0]]u.

Remark. Note there is an exact operational correspondence between and 7! :  is
simulated by7! directly, not up to some semantic equality.



(Type) unitÆ
def
= (()

"
)
!

(T1)T2)
Æ def

= (T Æ
1 (T Æ

2 )
"
)
!

(T1�T2)
Æ def

= ((T Æ
1 T Æ

2 )
"
)
!

(T1+T2)
Æ def

= ([TÆ
1 �T Æ

2 ]
"
)
!

(Base) /0Æ def
= /0 (E � x :T )

Æ def
= EÆ � x :TÆ

(Terms)

[[x : T ]]u
def
= [u ! x]T

Æ

[[() : unit]]u
def
= !u(x):x

[[λx : T 0:M : T 0)T ]]u
def
= ! u(xz):z(m)[[M : T ]]m

[[MN : T ]]u
def
= ! u(~z):(νmn)([[M : T 0)T ]]m jArghm;N;~ziT

0)T
) (�)

[[hM1; M2i : T �T 0
]]u

def
= ! u(c):c(m1m2)([[M1 : T ]]m1 j [[M2 : T 0

]]m2)

[[π1 (M) : T ]]u
def
= ! u(~z):(νm)([[M : T �T 0

]]m jProj1hm;~ziT ) (�)

[[inl(M) : T +T 0
]]u

def
= ! u(c):cinl(m)[[M : T ]]m

[[case L of fini(xi : Ti):Migi2f1;2g : T ]]u
def
= ! u(~z):(ν l)([[L : T1+T2]]l jSumhl;~z;f(xi)MigiT ) (�)

Arghm;N;~ziT1)T2
def
= m(nc)([[N : T1]]n j c(w):Msghw~ziT

Æ

2 )

Projihm;~ziT
def
= m(e)e(v1v2):Msghvi~ziT

Æ

Sumhl;~z;f(xi)MigiT
def
= l(c)c[& i2f1;2g(xi):(νm)([[Mi : T ]]m jMsghm~ziT

Æ

)]

Msghx~yi(~τ)
! def
= x(~y0)∏[y0i ! yi]

τi

(�)~z = z1z2 if T = T1)T2, else~z = z.

We omitinr(M) andπ2(M).

FIG. 8. Encoding ofλ!;�;+

Proof. See Appendix D.4.

Corollary 5.1. λ!;�;+ is strongly normalising.

Proof. Immediate from Theorem 3.2 and Proposition 5.9.

Proposition 5.9 and its corollary offer a faithful computational embedding ofλ !;�;+ in the
π-calculus: we now show that this also extends to semantics, starting from soundness. To
this end we first analyse the inhabitation property of the linearπ-calculus atB Æλ .

Proposition 5.10. If ` P . u : B Æλ and P 2 NFe then either P � [[true : B λ ]]u or

P� [[false : B λ ]]u.

Proof. We use Proposition 3.3, notingB Æλ
def
= ([�i=1;2(()

")! ]")! . Let P be aB-normal
form such that̀ P . u:B Æλ . By Proposition 3.3,P=!u(z):P0

1 such that̀ P01 . z:[�i=1;2(()
")! ]".

Again by Proposition 3.3P 0
1 = zini(w)P02 with ` P02 . w : (()")! . This way we reachP �

!u(z):zin ji(w)!w(v):v.



Lemma 5.2. (computational adequacy)Let M : B λ be closed. Then M + true i�

[[M]]u +e [[true]]u.

Proof. Proposition 5.9 gives the “only if” direction, noting[[true]] u 2 NFe. For the “if”
direction, we first observe the following property.

Claim. If `M : B λ andM + N then eitherN �α true or N �α false.

This is because, as mentioned in Section 5.1, closedλ!;�;+-normal forms of typeunit,
T1)T2, T1�T2 andT1+T2 have the shape, respectively,(), λx:M, hM1; M2i andiniM [be-
cause: there is nothing to prove when the term is either(), λx:M, hM; Ni or in i(M); if the
closed normal form isMN, by inductionM should be abstraction hence induces a redex, a
contradiction; ifπ(M) is a closed normal formM is again so, thus by induction we knowM
is a pairing which is impossible; similarly forcase L of fini(xi):Mig with respect toL].
HenceN as above should have formin i(N0) whereN 0 is of typeunit and is again a closed

normal form, that isN 0 def
= (), as required. Suppose[[M]] + [[true]]u andM + N. If N = true

we are done. If not,N = false. By Proposition 5.9, we know[[M]] u + [[false]]u, which contra-

dicts the CR of7!, hence done.

By the standard argument we obtain:

Corollary 5.2. (soundness)[[E `M : T ]]u �= [[E ` N : T ]]u implies E `M �=λ N : T .

5.5. Completeness

We now tackle a harder direction, the equational completeness of the encoding. While
preceding studies of types for theπ-calculus have established the soundness of someλ-
calculus embeddings, they are rarely complete due to the fine-grained nature of name-
passing [66]. The technical development in this subsection shows, following [10], that
the duality-based type discipline gives a precise representation of functional strong nor-
malising computation as name-passing processes, leading to full abstraction. The proof
usesfinite canonical forms (FCFs) [4, 37], which are semantically innocuous extension
of λ!;�;+-terms that can cleanly represent linear sequential processes under the encoded
λ!;�;+-typing. Via FCFs, we know all linear sequential processes ofλ!;�;+-types can be
decoded back intoλ!;�;+-terms. By sequential context lemma, this is enough to represent
all pertinent process contexts asλ!;�;+-terms, reaching the completeness. In comparison
with [10], we entirely argue via syntactic structure without going through innocent func-
tions (even though the definability argument is closely related to the one based on innocent
functions in [10]). The grammar of finite canonical forms [4, 37] (FCFs) follow.

F ::= () j x j λx:F j hF1;F2i j ini(F) j case x of fini(xi):Fig

j let () = z in F j let x = zF in F 0 j let hx;yi= z in F

FCFs use three additional constructs,let () = N in M (let-unit),let x = N1N2 : S in M
(let-app) andlet hx;yi= N in M (let-prod). We omit their typing rules [4, 37]. Hereafter
we only consider well-typed FCFs.

In the context of the functional calculus, we may consider FCFs in terms of their transla-
tion intoλ!;�;+-terms, which folds “let” constructs using substitutions. The map, denoted



fold( � ), is given as follows.

fold(())
def
= ()

fold(x)
def
= x

fold(λx:F)
def
= λx:fold(F)

fold(hF1; F2i)
def
= hfold(F1); fold(F2)i

fold(ini(F))
def
= ini(fold(F))

fold(case x of fini(xi):Fg)
def
= case x of fini(xi):fold(F)g

fold(let () = z in F)
def
= fold(F)

fold(let x = zF in F 0)
def
= fold(F 0)fz fold(F)=xg

fold(let hx;yi= z in F)
def
= fold(F)fπ1(z);π2(z)=x;yg

By structural induction, we can checkfold(F) is a -normal form for eachF. By com-
bining this folding with[[ ]]u, we can now encode FCFs into theπ-calculus.

Another way to map FCFs into theπ-calculus is to directly encode FCFs to ENFs. Below

we set, w.l.o.g.: forlets, [[F ]]u
def
=!u(~w):P; and, forcase, [[Fi]]u

def
=!u(~w):Pi.

hh()iiu
def
= !u(c):c

hhxiiu
def
= [u! x]

hhλx:Fiiu
def
= !u(xc):c( f )hhFii f

hhhF1;F2iiiu
def
= !u(c):c( f1 f2)(hhFii f1jhhFii f2)

hhini(F)iiu
def
= !u(c):cini( f )hhFii f

hhcase z of fini(xi):Figiiu
def
= !u(~w):z(c)c[& i(xi):Pi]

hhlet () = z : unit in Fiiu
def
= !u(~w):z(c)c:P

hhlet x = zF 0
in Fiiu

def
= !u(~w):z( f 0c)(hhF 0ii f 0 jc(x):P)

hhlet hx;yi= z in F : T iiu
def
= !u(~w):z(c)c(xy):P

hhFiiu and[[fold(F)]]u semantically coincide:

Lemma 5.3. For each E ` F : T , we have [[fold(F) : T ]]u �= hhF : T iiu.

Proof. See Appendix D.5.

A fundamental property of FCFs is that we can decode back processes ofλ !;�;+-types
onto corresponding FCFs. The decoding is done by first choosing sequential processes
(which does not lose generality by Proposition 5.6), then transforming them using certain
permutation.

Proposition 5.11.

(1)For each T and E, u :T Æ! EÆ
is sequential in the sense of De�nition 5.2.

(2)For each E ` F : T , we have `I hhF : T iiu .u :T Æ! EÆ
.

Proof. (1) is from Proposition 5.8 (1). (2) is easy induction.

Lemma 5.4. Assume below processes are in NFe, are sequentially typed with sequen-
tial action types, and obey Convention 3.1 and the standard bound name convention.



(1) (permutation)x(~rc)(R j c[& i(~wi):z(e)!e(~y):Pi]) �= z(e)!e(~y):x(~rc)( R jc[& i(~wi):Pi])

if x has ?-mode and z has "-mode.

(2) (η-expansion, 1) !u(~xz):P �=!u(~xz):z(~m)P0 for some ~m and P0 if z is typed as (~τ)".
(3) (η-expansion, 2)We say a sequential P is η-expandedif, for each subterm of P of the

form !u(~xz):P0 with z typed with a unary linear type, P0 has the shape z(~y)Q. Then for each
sequential P, there is an η-expanded Pη such that P �= Pη .

Proof. (2) and (3) use (1). See Appendix D.6 for detail.

We can now define the reverse map. Let`P . u:T Æ!EÆ such thatP2NFe without hiding
or redundant0. By Propositions 5.11 (1) and 5.6, we safely assumeP is sequentially typed.
Further by Lemma 5.4 (3) letP beη-expanded.2 Noting these conditions are satisfied by
each subterm ofP, the map((P)) is defined by the following induction. In the last four lines
we assumez 62 f~yg.

((!u(c):c))
def
= ()

((!u(xc):c( f )P))
def
= λx:((P))

((!u(c):c( f1 f2)(! f1(~y1):P1j! f2(~y2):P1)))
def
= h((! f1(~y1):P1)); ((! f2(~y2):P2))i

((!u(c):cini( f )P))
def
= ini(((P)))

((!u(~y):z(c)c:P))
def
= let () = z in ((!u(~y):P))

((!u(~y):z( f c)(Pjc(x):P0)))
def
= let x = z((P)) in ((!u(~y):P0))

((!u(~y):z(c)c(x1x2):P))
def
= let hx1;x2i= y in ((!u(~y):P))

((!u(~y):z(c)c[& i(xi):Pi]))
def
= case z of fini(xi):((!u(~y):Pi))g

By inspecting each rule, we immediately observe:

Proposition 5.12. Let `I P.EÆ �u : T Æ
. P 2 NFe and P is η-expanded. Then (1)

E ` ((P)) : T and (2) P� hh((P)) : T iiu.

A key property for the completeness follows.

Corollary 5.3. (definability) Let ` P . EÆ �u : T Æ
. Then P�= [[M : T ]]u for some

E `M : T .

Proof. By Propositions 5.11 (1) and 5.6, take the sequential version ofP, P ]. By

Lemma 5.4 (3), further take itsη-expansion,P ]η. Let M
def
= fold(((P]η))). Then we have:

P �= P]η � hh((P]η)) : T iiu �= [[fold(((P]η))) : T ]]u
def
= [[M : T ]]u;

as required (the first equation is by Propositions 5.6 and 5.11 (1); the next� is by Lemma

5.4 (3); and the third equation is by Lemma 5.3).

We can now establish the full abstraction. We use the following isomorphism between
B andB Æλ (actually we only need one direction of the isomorphism).

2In fact, we only needη-expansion for function types, i.e. when a subterm has the form !u(xz):P0. Alternatively,
we can dispense withη-expansion by adding an additional syntax to FCFs.



Proposition 5.13. (isomorphism) Write C[ � ]BA for a context whose hole has

type A and whose result has type B. De�ne:

Cf [ � ]
y:BÆλ
x:B

def
= !y(c):(ν x)(x[& i=1;2:cini( f )! f (g):g] j [ � ])

Cb[ � ]
x:B
y:BÆλ

def
= (ν y)(y(c)c[& i=1;2:xini] j [ � ])

Then we have:

(1)Cf;b are well-typed.
(2)Px:B +1

x iff Cf [P]
y
x +e [[true]]y, dually Py:BÆλ +e [[true]]y iff Cb[P]xy +

1
x.

(3)Cb[Cf [P]
y
x]

x
y 7!

+ P for each ` P . x :B and, dually, Cf [Cb[Q]xy]
y
x 7!+ Q.

Proof. (1) is immediate. For (2) let̀ P . x :B . Without loss generality letP 2 NF e, so
thatP� xini.

Cf [P]
y
x

def
= !y(c):(νx)(x[& i=1;2:cini( f )! f (g):g] j xini)

7!1 !y(c):cini( f )! f (g):g

Similarly Cb[!y(c):cini( f )! f (g):g]xy 7!
� xini, hence done. (3) follows (2).

Theorem 5.1. (full abstraction)E `M1 �=λ M2 : T i� [[M1 : T ]]u �= [[M2 : T ]]u.

Proof. Let E ` M1;2 : T with E = y1 : T2; ::;yn : Tn. By Corollary 5.2, we only have
to show the “then” direction. We prove the contrapositive,[[M 1 : T ]]u 6�= [[M2 : T ]]u implies
M1 6�=λ M2. Below we often omit type annotation for brevity.

[[M1 : T ]]u 6�= [[M2 : T ]]u

, 9 `I R.EÆ; `O S.u :T Æ
 v :B :
(ν x~y)([[M1]]ujRjS) +1

v ; (ν x~y)([[M2]]ujRjS) +2
v

(Lem: 5:1)

, 9 `I R.EÆ; `O S.u :T Æ
 v :B :
Cf [(ν x~y)([[M1]]ujRjS)]wv +e [[true]]w; Cf [(νx~y)([[M2]]ujRjS)]wv +e [[false]]w:

(Prop: 5:13(2))

, 9 `I R.EÆ; `O S.u :T Æ
 v :B :
(ν x~y)([[M1]]ujRjCf [S]wv ) +e [[true]]w; (ν x~y)([[M2]]ujRjCf [S]wv ) +e [[false]]w:

(Lem: D:1)

) 9: ` Ni : Ti; u : T ` L : B :
(ν x~y)([[M1]]ujΠ[[Ni]]yi j[[L]]w)+e[[true]]w; (ν x~y)([[M2]]ujΠ[[Ni]]yi j[[L]]w)+e[[false]]w:

(Cor:5:3)

, 9: ` Ni : Ti; u : T ` L : B :
(λu:L)((λy1::yn:M1)~N) + true; (λu:L)((λy1::yn:M2)~N) + false:

(Lem: 5:2)
def
, M1 6�=λ M2;

as required.

Remark. By Corollary 5.3, the embedding is in addition fully complete (in the sense of
[3]) up to�=.



6. LINEAR π-CALCULUS WITH FREE NAME PASSING

In the previous sections, we have investigated the properties of the linearπ-calculus whose
outputs are restricted to those which pass only bound names. Using bound names has
significance in making the representation of computational behaviour as tight as possible:
given some behaviour which we wish to model, the way of representing it in the typed
calculus becomes strongly constrained and thus, for example, we own a fairly tractable
notion of inhabitants in each type (Theorem 5.1). However, a natural question remains:
can we impose behavioural constraints of the similar kind on terms with free name passing,
i.e. using the standard syntax for the asynchronousπ-calculus? And if we can, does it add
any expressive power? This is not only intellectual curiosity. Apart from the simplicity
of the presentation (by moving to free name passing we can get rid of a couple of added
structural rules), free name passing makes the computation more tractable: it also has
technical advantages in the second-order setting [12].

This section studies these questions, extending the syntax to free outputs while using
precisely the same type structures. The typing rules do not change except for free outputs.
The embedding of terms of the system with bound outputs into the system with free out-
puts is essentially subset inclusion. After presenting the translation, we show these two
maps not only preserve types but also the semantics: they do not change the behaviour of
processes up to the canonical equalities. This result also shows that the universe of linear
terms with free outputs is semantically equivalent to its strict subset which use only bound
outputs, thus answering the question posed above. The extended reduction is used as a
tractable tool to prove their correspondence.

6.1. Linear Typing with Free Name Passing

The syntax of processes with free name passing is the standard asynchronous polyadicπ-
calculus with branchings and selections. We take off the bound output and selection from
the syntax in Section 5 and replace them with the following two.

P ::= ::: j xh~yi j xinih~yi

The bound outputx(~y)P can be recovered as(ν~y)(xh~yijP), so that the second syntax in fact
subsumes the first one. For the reduction relation�!, we replace the axioms with:

x(~y):P j xh~vi �! Pf~v=~yg
x[& i(~yi):Pi] j xinih~vi �! Pf~v=~yig

Similarly for replication. The typing rules for these processes are exactly the same except
that the sequent is now writteǹf P.A and that we use the following rules for outputs.

(Out)

�

`f xh~yi. x :(~τ)pO�~y :~τ

(Sel)

�

`f xin jh~y ji. x : [�i~τi]
pO�~y j :~τ j

In (Out), we assumeτ i = τ j if yi = y j. Similarly for (Sel). Note the types for object names
in the above two rules are dualised. The resulting system is denotedFNP and the original
system is denotedBNP. For clarity we hereafter writè b P.A for the typability inBNP.



The rules for outputs given above, are best understood in terms of the following repre-
sentation of free outputs in the realm of bound outputs.

xh~y~τiÆ
def
= x(~w)Πi[wi! yi]

τi

(The same expression already appeared asMsghx~wi in Figure 8). The annotation of free
objects do not lose generality since, when processes are typed, we can always restore the
original type information. The above representation says that a free name output is a bound
name output in which all exported names are “equated” with the mentioned free names. In
this representation,wi is used asτi and, as a result,yi is used asτi, illustrating the typing
rules given above.

Let ` P . A and definePÆ by extending the above map compositionally, i.e.0 Æ def
= 0,

(PjQ)Æ
def
= PÆjQÆ, ((ν x)P)Æ

def
= (ν x)(PÆ), (x(~y):P)Æ

def
= x(~y):(PÆ), (!x(~y):P)Æ

def
=!x(~y):(PÆ)

andxh~y~τiÆ
def
= x(~w)Πi[wi! yi]

τi , similarly for branching. We shall be using this encoding
for relating the two systems. We can easily check:

Proposition 6.1. `f P.A i� `b PÆ .A.

While we can directly verify various syntactic properties ofFNP, a simple way to do so
is by reducing them to those ofBNP. We first define the extended reduction for the free
output calculus as follows.

(E1f) C[xh~v1i]::[xh~vni] j x(~y):Q 7!l C[Qf~v1=~xg]::[Qf~vn=~xg]

(E2f) C[xh~vi]j!x(~y):Q 7!r C[Qf~v=~xg] j !x(~y):Q

(E3f) (ν x)!x(~y):Q 7!g 0

where(E1f ;E2f ;E3f) correspond to(E1;E2;E3) respectively (In(E1 f) we incorporate oc-
currences of linear output names in branches, cf. Section 5.1).(E1;E2;E3) are changed
accordingly. We now show, via the mapping( � )Æ, the dynamics ofBNP can completely
mimic that ofFNP.

Proposition 6.2. (simulation) Let̀ f P.A below.

(1) If P� Q thenPÆ � QÆ. Also PÆf~v=~yg
def
= (Pf~v=~yg)Æ.

(2) If P�! Q thenPÆ �!7!� QÆ.
(3) If P 7! Q thenPÆ 7!+ QÆ.

Proof. Two statements in (1) are mechanical. For (2) we argue by rule induction. For
the base case, we use Proposition 5.4 (2) as well as the latter half of (1) above to obtain:

x(~y):Pjxh~vi
def
= x(~y):PÆjx(~y)Π[yi! vi]

�! (ν~y)(PÆj[vi! yi])

7!� PÆf~v=~yg
def
= (Pf~v=~yg)Æ

hence as required. Similarly for the replicated reduction. The inductive cases are imme-
diate from the corresponding induction hypotheses, using the first part of (1) for the closure

under�. (3) is similar.

BelowCSN(P) andCSNe(P) in FNP are understood as those ideas inBNP.



Corollary 6.1.

(1) (reduction) If `f P . A, then (i) P �! Q implies `f Q . A; (ii) P �! Q1;2 implies
either Q1 � Q2 or Q1;2�! R for some R; and (iii) CSN(P).

(2) (extended reduction) If ` f P . A, then (i) P 7! Q implies `f Q . A; (ii) P 7! Q1;2

implies Q1;2 7!
� R for some R; and (iii) CSNe(P).

Proof. Direct from the corresponding results inBNP. As an example, let̀ f P.A and
P�! Q. Then`b PÆ .A by Proposition 6.1. Further letP�! Q. By Proposition 6.2 we
havePÆ 7!� QÆ, hence by subject reduction inBNP we havè b QÆ .A. Again by Proposi-

tion 6.1 this means̀ b Q.A, as required.

Remark. (on bisimilarities) Define� in FNP using the standard free name passing
transition, combined with the type-directed constraints given in Figure 4. We can eas-
ily show� coincides with the congruent closure of7! in FNP, using precisely the same
reasoning. This result cannot be obtained via the embedding, because� is not abstract
enough in comparison wit the one induced by the encoding: the equivalence obtained via
the embedding (based on� in BNP) is strictly more general. We can regain the latter by
using a refined typed transition discussed in [12] (also see [13]); though we use neither of
these bisimilarities in the following discussions.

6.2. Mutual Fully Abstract Embeddings

For mutual embeddings betweenBNP andFNP, we use the contextual congruences of the
previous section (defined by the same clause forBNP andFNP). We write this maximum
congruence forBNP andFNP, �=b and�=f , respectively. If we wish to designate them with-
out specifying which, we write�=. Since the symmetric closure of7! is a typed congru-
ence which respects convergence atB , we know7!��=. We use the following observations
[33, 56].

Lemma 6.1. For each `b P . A with md(A(x)) 2 f";?g and a fresh name y, we

have (νx)(Pj[x! y])�=b Pfy=xg. Similarly, for each `f P.A with md(A(x)) 2 f";?g,
we have (ν x)(Pj[x! y])�=f Pfy=xg.

Proof. By Proposition 5.4 (2)(νx)(Pj[x! y]) 7!� Pfy=xg in BNP. By Proposition 6.2

the same is true forFNP. Since7! stays within�=, we are done.

Let `b P .A. Then we writeP? for the result of translatingP into a process with free

name passing by the following map for bound output,(x(~y)P) ? def
= (ν~y)(xh~yijP?), as well as

0? def
= 0, (PjQ)?

def
= P?jQ?, ((ν x)P)?

def
= (ν x)(P?), (x(~y):P)?

def
= x(~y):(P?) and(!x(~y):P)?

def
=

!x(~y):(P?), similarly for branching. We can verify:

Proposition 6.3. `b P.A i� `f P? .A.

We can now state the main result of this section.

Theorem 6.1. (both-way retracts)For each ` P . A, we have P?Æ �=b P. Similarly,

for each `f P.A, we have PÆ? �=f P.



Proof. For the first half, we use induction. The only non-trivial case is bound output.
Let` x(~y)P . A. Then

(x(~y)P)?Æ
def
= (ν~y)((x(~w)Πi[wi! yi])jP?Æ)

� x(~w)(ν~y)(Πi[wi! yi]jP?Æ)
�=b x(~y)(P?Æ) �=b x(~y)P

The last two equations are by Lemma 6.1 and by induction hypothesis, respectively. The
second half is also by induction, which boils down to showingxh~yi Æ?�=f xh~yi. In fact, using
Lemma 6.1, we have:

xh~yiÆ?
def
= (ν~w)(xh~wijΠi[wi! yi]) �=f xh~yi

as required.

Theorem 6.1 shows that all additional terms inFNP which do not exist inBNP are in fact
equivalent to their image inBNP, so thatFNP does not add anything toBNP semantically.
Further it says that this map is semantically the identity map onBNP. We now conclude
the section with a full abstraction result.

Corollary 6.2. (full abstraction)`b P �=b Q . A i� `f P? �=f Q? . A. Similarly

`f P�=f Q.A i� `b PÆ �=b QÆ .A.

For the proof we use the characterisation in Proposition 5.2 (2) . SupposeP �=b Q and
C[P?] +i

x. By Theorem 6.1,RÆ �=f R, so that(C[P?])Æ +i
x, that isCÆ[P?Æ] +i

x. Again by
Theorem 6.1 we haveCÆ[P] +i

x. By assumption we haveCÆ[Q] +i
x, that is(CÆ[Q])? +i

x,
from which we know, again by Theorem 6.1,C[Q ?] +i

x, as required. The converse is trivial
since( )? is syntactic identity. The proof of the second half is precisely symmetric.

7. DISCUSSION AND FURTHER WORK

Summary. The present study is part of our quest to articulate significant classes of com-
putational behaviour using typedπ-calculi. Previous work [11] introducedaffine, sequen-
tial types for theπ-calculus and established full abstraction for an encoding of PCF, which
is the representative sequential functional calculus allowing divergent computation. Us-
ing causality between names, the present text refines affine, sequential types intolinear
types to ensure strong normalisability and full abstraction forλ!;�;+. Figure 9 shows the
relationship between these results.

� The addition of branching types is indicated by &,! adds causality to action types,
andSeq stands for the inclusion of the sequentiality constraints used in [11].
� Determinacy, SN and sequentiality are properties guaranteed by each typing system.
� FC denotesfull completeness of the embedding of the correspondingλ-calculus into

theπ-calculus in the sense of [3] (up to� andη-expansion, cf. Proposition 5.3), whileFA

stands forfull abstraction up to semantic equality.

For example, the linear typing system in § 2 corresponds toAff +!, its branching extension
in §5 toAff + & +! and the sequential system in [11] toAff + & + Seq. Note that the de-
velopment in § 5 shows that our encoding is already ‘almost’ fully complete intensionally
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and indeed becomes fully complete by quotienting with the observational congruence. It
is also notable that we could have used the call-by-value encoding in [49] to obtain exactly
the same result, indicating the flexibility of the proposed calculus to encode functional SN
behaviour. Extensions based on this family are summarised in the introduction, but also in
[35, Figure 1] and [67, Figure 1]. See also the discussion below.

Liveness in Interaction. A consequence of strong normalisability is liveness in inter-
action: if a typed agent calls another replicated typed agent and waits for its answer at a
linear channelx, then an answer is guaranteed to eventually arrive atx, however complex
intermediate interaction sequences would be.

Proposition 7.1. (linear honesty)Let x : (τ)! 2 A such that md(τ) =". Suppose

` P . A with A closed. Then P
x(y)
�! P0 implies P0 �!� l

�! where l is an output at y.

For the proof we use the following lemma.

Lemma 7.1. (linear actions) Let Γ ` P . A
 " x with A closed. Then for each

P�!� P0 there exists P0 such that P0�!
� P0 where (1) P0 contains no active linear

input channels, and (2) P0
l
�! such that l is an output at x.

Proof. Without loss of generality assumeP� Π1::nPyi
i where eachPi is prime (we can

ignore other shapes ofP because if there is a restriction atx then the corresponding action
type is again closed). ByA being closed, all free outputs inP are compensated by free input
channels which should be active by well-typedness. This means eachPi is input-prefixed
or, if not, it is output-prefixed withx. Suppose there is a linear input prefix with subject,
say,y01 2 fyg. SinceA is closed, there is a compensating output. SinceP 2 NFe, this output
should be under some input prefix whose subject cannot bey 01 by acyclicity. This means,
say,y02y y01. Again this should be compensated by some output, which should be prefixed
by an input with subjectz, but z cannot be amongfy 01;y

0
2g by acyclicity again. So set

z = y03. In this way we have a chain of formy 0n y y0n�1y ::y y01 which exhaustfyg. But
this meansy0n has no compensating output, contradictingA’s being closed. Hence there is



no active linear input inP, establishing (1). Since ifx is not active it should be under the
prefix of a linear input, this also proves (2), as required.

By CR of�! and by Theorem 3.1, this establishes Lemma 7.1.

Now Proposition 7.1 is immediate by noting that, after the mentioned input, the term has
the action type mentioned in the Lemma after it performs the appropriate input.

We can strengthen Proposition 7.1 by incorporating the possibility that the client itself
interacts with the server towards the eventual answer [30]. The central point of the present
liveness property is that, in spite of such nested, complex webs of procedure calls, each
client is still guaranteed to receive an answer, improving on preceding related type disci-
plines, cf. [40, 41, 66]. We can further guarantee this liveness property with non-terminated
and stateful (i.e. non-deterministic) computation [67]; this property plays as the key rˆole
to establish further applications for information flow analysis of programming languages
[35, 69].

State and Non-functional Control. It is an important subject of study to extend our
typing system to allow incorporation of state, control and other non-functional elements.
The resulting calculi would be useful as a theoretical basis for the application of SN in a
wider realm. Such a formalism might also be useful as a meta-language for logical systems
with e.g. non-deterministic cut elimination procedures.

For stateful computation, [67] has verified that our proof method is also applicable in
SN for first-order stateful processes combining the proof method established in Classical
Logics framework [43, 62]. The basic idea is first replacing replication with recursion [32],
then applying the term rewriting technique directly using the extended reduction. This
allows to carry over the SN type discipline and related results in imperative computation
involving non-trivial procedure calls in [35].

For the incorporation of control into the present type discipline, all we need is to elim-
inate#-" types from the present system. In other words, the system presented in Section
2 already contains the calculus for (linear) control as its subcalculus. This means, among
others, the calculus satisfies all syntactic properties we have explored in Sections 2 and 3,
including strong normalisability. We have verified that a sequential version of this calculus
can fully abstractly embed Parigo’sλµ-calculus. Further discussions on this calculus and
its extensions will be discussed elsewhere.

Second-order and Other Extensions in Type Structure. Can the presented results be
augmented to cover more expressive notions of types studied in functional calculi? Adding
recursive types [50, 64] easily leads to a system that is not strongly normalising: for ex-
ample, the encoding, following Figure 8, of(λx:xx)(λx:xx) becomes typable. Regarding
second-order types, our recent work [12] demonstrates that such extensions coexist har-
moniously with SN, as they do in the corresponding functional calculi. In particular, the
causality constraints formalised in the present paper are sufficient to encode System F
fully abstractly in the second-order extension of the present system. Other, more refined
type structures would also be worth studying in the present context: theπ-calculus offers
a natural habitat to SN typing systems for stateful, control [29], interactive and mobile
computation.

Complex Causality. The present work adds minimum causality to the system in [11]
to ensure SN of replicated processes. However, our SN proof seems to be able to cope,



without significant change, with more complex causality relations: for example, we could
relax the channel type constraints and extend action types to finite graph structures between
arbitrary linear nodes as in [66]. An even wider class of SN interactions would be typable
if we further allowed edges of the more general formpx! qy, wherep 2 f#;";?g and
q 2 f! ;#;"g (i.e. replicated and linear nodes can be mixed). Diverse structures would
be embeddable in such an extension, including full proof nets [9]. The status of strong
reduction would become subtle in this setting, cf. [22].

Game Semantics. In game semantics, “winning strategies” represent strong normalisa-
tion [3]. This representation ensures, essentially by definition, that composition of two
winning strategies will never go into infiniteτ-actions (which would make the strategy
partial). This extensional representation of SN does not directly suggest concrete type dis-
ciplines to ensure SN for mobile processes, even though the liveness property discussed
in Proposition 7.1 closely corresponds to the games-based characterisation of SN. In this
context, we observe that the sequential version of the linearπ-calculus discussed in Section
5.3 is the linear refinement of the affine sequential calculus in [10, 11]. This immediately
shows that the typed sequential transition for the linear sequentialπ-calculus isinnocent
in the sense of [4, 10, 37]. The linear liveness in Proposition 7.1 further indicates that it
is total, in the sense that it is always defined for each legal input; and, moreover, we can
show it isfinite in that the cardinality of the induced innocent function for each process is
finite. It would be interesting to use the framework introduced in the present paper, among
others typed processes and their behavioural characterisation, for formulating and studying
various notions of SN and related ideas in game semantics (for example we may consider
explicit incorporation of acyclicity conditions).

Term Rewriting and Reduction Strategies. The proof method presented in this paper
uses the extended reduction7! to prove not only SN but also other results including a
fully abstract embedding ofλ!;�;+. One of the merits in using7! lies in the potential
applicability of various Term Rewriting Lemmas in the context of interacting processes.
In fact, technically speaking, this may be regarded as one of the main differences from
other studies addressing termination and other related properties of processes [41, 58]. Our
recent work [67] partly addresses this point. In Section 3, we define a reduction strategy of
7! to prove SN. Like the left-most reduction strategy of theλ-calculus, this strategy could
be defined in the untyped setting in general, then could be used to prove the normalisation
theorem (i.e. it always derives a normal form if it exists). This opens possibility to study
various reduction strategies in the name-passing scenario, which had not been investigated
so far due to, among others, existence of structure rules. We may hope that, through such
studies, that the accumulated ideas from functional computation such as optimality [45]
may be transferable into non-deterministic and non-terminating interactive computation.
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APPENDIX A

A.1. PROOFS FOR SECTION 2

A.2. PROOF OF SUBJECT REDUCTION THEOREM

We prove Proposition 2.2 (1). The key point is to prove basic properties of algebra on
action types. We use the same routine as in [11, 32, 66]. We first show:

Lemma A.1. Assume A;A1 and A2 are action types.

(1) A=~y is an action type.

(2) If A1� A2, then A1�A2 is an action type.

Proof. As the proof in Lemma 3.4 in [32]. (1) is trivial. The casefn(A 1)\ fn(A2) = /0 in
(2) is obvious. The other case is proved by induction on the size ofA 1 andA2 using the BNF

representation of action types.

Lemma A.2. Let A1, A2, A3 be action types. Then we have:

(1) (commutativity)Assume A1�A2. Then we have A2�A1 and A1�A2 =A2�A1.

(2) (associativity)Assume A1� A2 and (A1�A2)� A3. Then we have: (1) A1� A3

and A2� A3, (2) A1� (A2�A3) and (3) (A1�A2)�A3 = A1� (A2�A3).

Proof. (1) is obvious by definition. (2) is proved by induction on the size ofA i using the
BNF representation of action types. This is proved as (a special case of) Lemma 3.5 in
[32].

Lemma A.3.

(1) If x :τ 2 jAj and md(τ) 2 f! ;#g then there is no y :τ 0 2 jAj such that y :τ0! x :τ.
(2) ?B� ?B and B�B = B.

(3) If A� B with A=~x = A0, xi :τi 2 jAj, md(τi) 2 f! ;#;lg, and fn(B)\f~xg= /0, then
A0� B and (A�B)=~x = A0�B.

(4) If A�B with A=~x=A0, xi :τi 2 jAj, md(τi)2 f! ;#;lg, and B=~x=B0, then A0�B,
A� B0, A0� B0, and (A�B)=~x = A0�B0.

(5) Suppose A=~x = A0, B=~x = B0 and A0 � B0. Assume xi : τi 2 jAj with md(τi) 2

fl; ! ;#g, and if xi :τ0i 2 jBj, then τi � τ0i. Then A� B and (A�B)=~x = A0�B0.

Proof. (1) is by the definition of permissibility of!, i.e. there is no edge to inputs and
l. (2) is obvious byτ� τ = τ with md(τ) = ?. For (3), by (1), we can writeA =
 i(xi :τi!

A0i)
A0 sincemd(τi) 2 f! ;#;lg (noteAi may be/0). Then byA� B, obviouslyA0 = (Ai


A0)�B. Hence we have(A�B)=~x= (A=~x�B=~x) = A0�B. The proof of (4) is similar. (5)

uses (2) and (4).

Remark. If we delete the side conditionmd(τ i) 2 f! ;#;lg in (5), the property does
not hold. For counterexample, letA = x1 : τ1! x2 : τ2 andB = x2 : τ2! x1 : τ1. Then
A=x1x2� B=x1x2, butA�B is undefined.



Lemma A.4.

(1) ` P . A and P� Q then ` Q . A.
(2) ` x(~y :~τ):P jx(~y:~τ0)Q . A implies ` (ν~y:~τ00)(P jQ) . A with τ0i = τi and τ00i = τi�τ0i.
(3) `!x(~y :~τ):P j x(~y :~τ0)Q . A implies `!x(~y :~τ):P j (ν~y :~τ00)(P jQ) . A τ0i = τi and

τ00i = τi� τ0i.

Proof. The proof is essentially the same as in [11, 32]. Assume` P . A. Then, as
in [11, Proposition 1 (ii)], there exists a minimum action typeA 0 such thatA0 � A1 and
` P . A0 (since we only have to use(Weak) before restriction and input rules). Hence in
the following we only consider the minimum action types.
(1) By rule induction on�. The case ofP j0� P is easy because/0 is a unit of�. Similarly
the cases ofP jQ�Q jP, and(P jQ) jR� P j (Q jR) are proved by Lemma A.2 (1) and (2),
respectively. Next take the structural rule

(x(~y)P) jQ � x(~y)(PjQ) with x 62 fn(Q)

Assume` (x(~y)P)jQ . A such thatx 62 fn(Q). By typing rules we can assumèx(~y)P .

A1 and` Q . A2 with A1 � A2 andA1�A2 = A. By strengthening of bases we can set
f~yg\ fn(A2) = /0. From` x(~y)P . A1 we deducè P . A01
~y :~τ with A1 = A01� x : (~τ)pO.
By Lemma A.3 (5) and associativity, we haveA 0

1
~y :~τ � A2 and((A01
~y :~τ)�A2)=~y�x :
(~τ)pO = A, so that̀ x(~y)(PjQ) . A. The inverse and other cases are similarly dealt with.

(2) It is proved by the same reasoning as(3) below (the proof is simpler than(3)).

(3) We prove the monadic case. The polyadic case is just the same. Suppose

`!x(y :τ):P j x(y :τ0)Q . A

Then, we have the derivations such that

`!x(y :τ):P . A1 and ` x(y :τ0)Q . A2

with A1
def
= (x : (τ)! ! ?A01) andA1�A2 = A. Then the above input and output processes

are derived by(In!) and(Out) from

` P . y :τ
A01 and ` Q . (y :τ0! A02)
A002 with (A02
A002)� x :(τ0)? = A2

First, byA1 � A2, we haveτ = τ0. Also by (iv), we haveA01 � (A02
A002) andA01� (A02

A002) = A1=x�A2=x.

Supposemd(τ) =#. Then we have

` P jQ . y :l
 (A1=x�A2=x)

Hence by(Res), we have:

` (ν y :l)(P jQ) . (A1=x�A2=x)

Next we apply(Weak) to A2=x in order to obtainA2. Then we have:

` (ν y :l)(P jQ) . A1=x�A2



By (4) in Lemma A.3,A1�A1=x = A1, together with associativity, we finally have

`!x(y :τ):P j (ν y :l)(P jQ) . A

The casemd(τ) = ? is just the same by replacingl by τ above.

By the above lemma, we conclude with Proposition 2.2 (1).

A.3. PROOF OF STRONGLY CONFLUENCE

We prove Proposition 2.2 (ii). The only case for a critical pair ish!a(~x):P; a(~x)Q 1i and
h!a(~x):P; a(~x)Q2i. If R contains this critical pair, then we can write down

R� (ν~c)(!a(~x):P ja(~x)Q1 ja(~x)Q2 jQ
0)

Suppose

R�! (ν~c)(!a(~x):P j (ν~x)(P jQ1) ja(~x)Q2 jQ0)
def
= R1 and

R�! (ν~c)(!a(~x):P ja(~x)Q1 j (ν~x)(P jQ2) jQ0)
def
= R2:

Then by contracting !a(~x):P anda(~x)Q2 in R1, we have

R1�! (ν~c)(!a(~x):P j (ν~x)(P jQ1) j (ν~x)(P jQ2) jQ
0)

def
= P0

Now by contracting !a(~x):P anda(~x)Q1 in R2, we haveR2�! P0.

APPENDIX B

PROOFS FOR SECTION 3

B.1. PROOF OF PROPOSITION 3.1

(1) is essentially identical with the proof of�!, using Lemma A.4. For (2), first we start
from the following lemma about garbage collection and linear reduction. The proof is
mechanical. We assume all terms are typable.

Lemma B.1.

(1) (postponement of7!g) If P 7!g Q 7!l R, then for some S, P 7!l S 7!g R. Similarly

if P 7!g Q 7!r R, then for some S, P 7!r S 7!+
g R.

(2) (strong confluence of7!g) If P 7!g Qi (i = 1;2), then Q1 � Q2 or there exists R
such that Qi 7!g R.

(3) (strong normalisation of7!g) For all P, there exists Q such that P 7!�
g Q and

Q 67!g.

(4) (strong confluence of7! l) If P 7!l Qi (i = 1;2), then Q1 � Q2 or there exists R
such that Qi 7!l R.

(5) (strong normalisation of7! l) For all P, there exists Q such that P 7!�
l Q and

Q 67!l.

Let us define7!0
def
= ( 7!r [ 7!l). By postponement of7!g, if P 7!� R, then there exists

S such thatP 7!�
0 S 7!�

g R. Since7!g always canonically terminates, we only have to show
the CR of7!0 (cf. [39]). For this, it is sufficient to show the followingstrip lemma.



Lemma B.2. (strip) If P 7!0 P1 and P 7!�
0 P2, then there exists P3 such that

P1 7!
�
0 P3 and P2 7!

�
0 P3.

Proof. The only interesting case is that an uncontructed message appears under a repli-
cated input. The proof we use here is similar to the one used in Chapter 11 Section 1 of
[7] based on the labelled reduction [45]. Our case is simpler since we only contract one
message at each step and there is no overlap of occurrences of two messages which are
duplicated from the same replication (cf. [45] and Section 11.2 in [7]). LetP1 be the re-
sult of replacing the redexa(~y)Q1 in P by its reduct(ν~y)(R1 jQ1). If we keep track of
what happens witha(~y)Q1 during the reductionP 7!�

0 P2, then we can findP3. To be able
to tracea(~y)Q1, we define a new set of terms where uncontructed messages can appear
underlined [45]. Consequently, if we underlinea in a(~y)Q 1, we only need to reduce all

occurrences of the underlineda in P2 to obtainP3. The rest is the just same as in [7].

By Lemma B.2, we obtained CR-property of7! (Proposition 3.1 (2)). To prove that the
first statement in Proposition 3.1 (3), we note thatP 7!g P0 andSNe(P0) does not normally
imply SNe(P) in untyped setting (e.g.Q *e but (νx)!x(~y):Q 7!g 0). Hence we shall prove
this statement using postponement of7!g, Lemma B.1 (1).

Lemma B.3.

(1) If P 7!0 P0 and SNe(P0), then SNe(P).

(2) Suppose P 67!0. Then P 7!g P0 and SNe(P0) implies SNe(P).

(3) If P 7! P0 and SNe(P0), then SNe(P).

Proof. For (1), we can easily checkP 7!0 Pi (i = 1;2) with P1 � P2 implies that there
existsR such thatPi 7!

+
0 R. Then the rest is standard with Lemma B.2, cf. [1, 7, 36, 39]. (2)

is by strong normalisation and church-rosser of7! g. For (3), by (1) in this lemma, we only
have to proveP 7!g P0 andSNe(P0) impliesSNe(P). Then by Lemma B.1 (1) there exists at
least one pass such thatP0 7!�

0 P1 7!
�
g R 67! with P1 67!0. SinceSNe(R), we haveSNe(P1) by

(2). Now by applying Lemma B.1 (1) again, we have someP 0
1 such thatP 7!�

0 P01 7!
�
g P1 7!

�
g

R 67! with P01 67!0. We again haveSNe(P01) by (2), from which we can obtainSNe(P) by (1),

as required.

The rest of Proposition 3.1 (3) is straightforward by this and CR property of7!.

APPENDIX C

PROOFS FOR SECTION 4

C.1. PROOF OF PROPOSITION 4.5

Let R def
= fhP;Qi j ℑ e ` P = Qg. The statement saysR��. It is enough to show this in-

clusion under Convention 3.1 since� is already closed under�. By Proposition 4.3 (3), it
suffices to showR[�α is a bisimulation with respect to prime syntactic transition. We first
consider the pair from(E1), C[x(~y)P]jx(~y):Q andC[(ν~y)(PjQ)]. Let R = C[x(~y)P]jx(~y):Q



and set̀ R . A. If ` R
l
�! R0, we have the following cases.

(1) C[x(~y)P]jx(~y):Q
l
�!C0[x(~y)P]jx(~y):Q (2) C[x(~y)P]jx(~y):Q

τ
�! (ν~y)(C[P]jQ)

(3) C[x(~y)P]jx(~y):Q
l
�!C[x(~y)P0]jx(~y):Q (4) C[x(~y)P]jx(~y):Q

τ
�!C0[P]jx(~y):Q

(5) C[x(~y)P]jx(~y):Q
x(~y)
�!C[x(~y)P]jQ (6) C[x(~y)P]jx(~y):Q

x(~y)
�!C[P]jx(~y):Q:

We shall now show that only the processes in (1), (2) and (3) are typable. To this end we
show by induction on the derivation of̀R .A thatlx 2 A. This implies thatC[ ] cannot
contain an input atx. Hence (4) is not typable. Similarly, no typable observer could contain
an output or an input atx, making in (5) and (6) untypable.

The transition (1) is matched by a transitionC[(ν~y)(PjQ)]
l
�!C0[(ν~y)(PjQ)] while the

empty transition sequenceC[(ν~y)(PjQ)]matches (2) becauseC[(ν~y)(PjQ)]� (ν~y)(C[P]jQ),

as can be shown by induction on the derivation of (2). It is easy to see thatC[(ν~y)(PjQ)]
l
�!

C[(ν~y)(P0jQ)] is an admissible match for (4).

Now assume thatR =C[(ν~y)(PjQ)]
l
�! R0, ` R.A and` R

l
�! R0. We have the follow-

ing causes of the transition.

(1) C[(ν~y)(PjQ)]
l
�!C0[(ν~y)(PjQ)] (2) C[(ν~y)(PjQ)]

τ
�!C0[(ν~y)(ν~z)(P0jQ0)]

(3) C[(ν~y)(PjQ)]
l
�!C0[(ν~y)(P0jQ)] (4) C[(ν~y)(PjQ)]

l
�!C0[(ν~y)(PjQ0)]

(1) is matched byC[x(~y)P]jx(~y):Q
l
�! C0[x(~y)P]jx(~y):Q. For (2), we first show, by in-

duction on the transition, thatC[ ] must be a reduction context. If the contextC[ ] in the
definition of extended reduction (Definition 3.1) is restricted to a reduction context, then
the resulting relation coincides with�!, hence also with

τ
=) by Proposition 4.2. Thus we

obtainC[x(~y)P]jx(~y):Q
τ
�! C[(ν~y)(PjQ)]

l
�! C0[(ν~y)(ν~z)(P0jQ0)] as matching transition

sequence. The remaining cases (3) and (4) are dealt with in the same way.
Similarly for the pair from(E2), C[x(~y)P]j!x(~y):Q andC[(ν~y)(PjQ)]j!x(~y):Q. Finally we

can immediately reason about the pair from(E3), (νx)!x(~y):P and0, since no transition is
possible in either process.

C.2. PROOF OF LEMMA 4.1

For (1), if aB-normal form contains hiding and/or redundant0, � 0 cannot equate it
with the result of stripping them off; while if it doesn’t, since. only strips off (rather than
increases) them, applying. is the same thing as applying� 0. (2) is immediate by reaching
an ENF by Theorem 3.2 and then by stripping redundant hiding and0 by . (which is
inside�). For (3), by definition the processes generated by the rules in Proposition 3.3
do not contain hiding and redundant0. For the converse we argue by strucrural induction
combined with these two conditions to show.-normal forms can be generated by the three
rules in Proposition 3.3. (4) is immediate from (3). For (5), we show this forP 2 NF e

which is enough. SupposeP 2 NFe andP
τ
�! P0. We can easily checkP

τ
�! P0 implies

P�! P0, that isP 7! P0, which contradictsP0 2 NFe.

APPENDIX D

PROOFS FOR SECTION 5



D.1. PROOF OF PROPOSITION 5.2 (2)

The “only if” direction is immediate from the definition. For the “if” direction, letC[ � ]

be a context with its hole typedA and the result typedx : B with x fresh (if x 2 fn(A)
we can always use a copy-cat to mediatex to a fresh name). Assume the latter con-
dition andC[P1] +

i
x. If the hole ofC[ � ] is not under an input prefix, then we already

haveC[ � ]
def
= (ν fn(A))(Rj[ � ]). Suppose the hole is under an input prefix. IfC[P1] +

i
x

by C[P1]!! xinijC0[P1σ] keepingP1 under the input prefix along the way (possibly with
some substitutionσ) then we haveC[P2]!! xinijC0[P2], i.e.C[P2] +

i
x. If not, then suppose

C[P1]!!C0[P1σ] whereC0[P1σ] is the first configuration in which the input prefix is taken
off. Using copycats, we can representσ by parallel composition and hiding, so that the
former condition gives usC[P2] +

i
x, as required.

D.2. PROOF OF PROPOSITION 5.4

Both are mechanical by induction onτ. Below we show the proof for (2), taking the

unary replicated case. Letτ = (~ρ)! so that[y! x]τ
def
=!y(~z):x(~w)Π[wi ! zi]

ρi . Let P �
C[y(~z)R1]::[y(~z)Rn] wherey(~z)R j exhausts all prime outputs inP (these contexts can be
nested). Then we have:

(ν y)(Pj[y! x]τ) 7!n+1 C[(ν~z)(R1jx(~w)Π[wi! zi]
ρi)]::[(ν~z)(Rnjx(~w)Π[wi! zi]

ρi)]

� C[x(~w)(ν~z)(R1jΠ[wi! zi]
ρi)]::[x(~w)(ν~z)(RnjΠ[wi! zi]

ρi)]

7!� C[x(~w)R1f~z=~wg]:::[x(~w)Rnf~z=~wg]
�α C[x(~z)R1]:::[x(~z)Rn]

where: (1) the first extended reduction involvesn replications and 1 garbage collection;
and (2) the second extended reduction in by induction hypothesis. This also gives the base
case, where, withτ = ()! , we can dispense with the second steps forward. The final�α is
possible because~z are fresh w.r.t.Ri. Other cases are the same.

D.3. PROOF OF PROPOSITION 5.8

Let T Æ = (~τ)! andT1;2 arbitrary below. We first show:

(1) `Msghm;~ziT . m :T Æ
~z :~τ.
(2) ` Arghm;N;~ziT

0)T . m :(T 0)T )Æ
~z :~τ
EÆ if ` [[N : T 0]]u . u :T 0Æ! EÆ.
(3) ` Projihm;~ziTi . m :(T1�T2)Æ
~z :~τ.
(4) ` Sumhm;~z;f(xi)Migi

T . m :(T1+T2)Æ
EÆ if ` [[Mi : T 0
i ]]u . u :T 0Æ

i ! EÆ (i = 1;2)
for someT 0

1;2.

For proofs, (1) is immediate from Proposition 5.4 (1). The remaining statements are
direct from the definition. For example, let̀ [[N : T 0]]u . u : T 0Æ 
EÆ. For simplicity,
assumeT Æ = (τ)! and, accordingly,~z = z. By (1) we have, noting thatmd(τ) =" in this
case,̀ c(w):Msghw;ziT

Æ
. c:(T Æ)#! z:τ. Together with the given assumption, we obtain:

` m(nc)([[N : T 0]]n j c(w):Msghw;ziT
Æ

) . m :(T 0Æ(T Æ)#)?
 z :τ
EÆ

as required.

Remark. In the above,m in Arghm;N;~ziT
0)T , Projihm;~ziT andSumhm;~z;f(xi)Migi

T

is typed by the dual of the encoded function, product and sum type, respectively, indicating
the role of these expressions as the desctructors of the corresponding constructors.



Now we prove Proposition 5.8 by rule induction of the map[[M : T ]] u.

Case [[x : T ]]u. Direct from Proposition 5.4 (1).

Case [[() : unit]]u. Immediate from the definition.

Case [[λx : T 0:M : T 0)T ]]u. Immediate from the induction hypothesis.

Case [[MN : T ]]u. By induction hypothesis on[[N : T 0]]we can apply (2) above toArghm;N;~ziT
0)T ).

By induction hypothesis on[[E `M : T 0)T ]]m we havè [[M : T 0)T ]]m . m:(T 0)T )Æ!

EÆ. Thus, with[[T ]] = (~τ)! :

` (νmn)([[M : T 0)T ]]m jArghm;N;~ziT
0)T ) .~z :~τ
EÆ

from which we obtaiǹ !u(~z):(ν mn)([[M : T 0)T ]]m jArghm;N;~ziT
0)T ) . u :T Æ! EÆ.

Case [[hM1;M2i : T1�T2]]u. Direct from the induction hypothesis.

Case [[πi(M) : T ]]u. By (3) above and induction hypothesis, arguing as in the case of[[MN :
T ]]u in the last step.

Case [[inl(M) : T +T 0]]u. Direct from the induction hypothesis.

Case [[case L of fini(xi : Ti):Migi2f1;2g : T ]]u. By Lemma (2) above and by induction
hypotheses, arguing as in the case of[[MN : T ]]u in the last step.

D.4. PROOF OF PROPOSITION 5.9

The proof uses the following variation of the replication theorems [49, 53].

Lemma D.1. (ν x)(C[[[x : T ]]u]j[[N : T ]]x) 7!
� (ν x)(C[[[N]]u]j[[N]]x) assuming typability.

Proof. Let T Æ = (~τ)! and[[N : T ]]x
def
=!x(~w):P. We have:

(νx)(C[[[x : T ]]u]j[[N : T ]]x)
def
= (ν x)(C[!u(~z):x(~w)Π[wi! zi]

τi ]j!x(~w):P)
7! (ν x)(C[!u(~z):(ν~w)(PjΠ[wi! zi]

τi)]j!x(~w):P)
7!� (ν x)(C[!u(~w):P]j[[N : T ]]x)

The last step is by Proposition 5.4 (2).

We can now prove Proposition 5.9. For (β), assuming[[M]] u
def
=!u(~z):P, we calculate:

[[(λx:M)N]]u
def
= !u(~z):(ν m)(!m(xy):y(m0)[[M]]m0 jm(xy)([[N]]xjy(m0):Msghm0~zi))
7!2 !u(~z):(ν xm0)([[M]]m0 j[[N]]xjMsghm0~zi)
7!� !u(~z):(ν x)(Pj[[N]]x) (Prop. 5.4 (2))
7!� !u(~z):Pf[[N]]v1::[[N]]vn=[[x]]v1::[[x]]vng (Lemma D.1)
def
= [[MfN=xg]]u;

as required. For (proj1), let [[M1 : T1]]u
def
=!u(~z):P below.

[[π1hM1;M2i : T1]]u
def
= !u(~z):(ν m)(!m(c):c(m1m2)Π[[M : Ti]]mi jm(c)c(m1m2):Msghm1;~zi)
7!3 !u(~z):(ν m1m2)(Π[[M : Ti]]mi jMsghm1;~zi)

7!� !u(~z):P (
def
= [[M1 : T1]]u): (Prop. 5.4 (2))



For (casei), we again let[[M1 : T1]]u
def
=!u(~z):P.

[[case in1(N) of fini(xi : Ti):Mig : T ]]u
def
= !u(~z):(ν l)(!l(c):cin1(x1)[[N : T1]]x1jm(c)c[& i(xi):(ν m)([[Mi : T ]]mjMsghm;~zi)])
7!3 !u(~z):(ν x1)((ν m)([[Mi : T ]]mjMsghm;~zi)j[[N : T1]]x1)

7!� !u(~z):(ν x1)(Pj[[N : T1]]x1) (Prop. 5.4 (2))
7!� [[M1fN=x1g : T ]]u; (Lemma D.1)

hence done.

D.5. PROOF OF LEMMA 5.3

We use two observation which are often useful.

Lemma D.1. Let R be a replicated process with subject x and assume `C[P]jRjS .

A for some A such that x does not occur in C[ � ]. Then, under the standard bound

name convention, (ν x)(C[P]jRjS)�=C[(ν x)(PjR)]jS.

Proof. Immediate by performing extended reduction at occurrences ofx in P on both

sides, and noting7!����=.

Lemma D.2. Let ` Q1;2 . A and let f~yg � fn(A) such that md(A(yi)) = ? for each

yi 2 f~yg. Suppose for each ` R .~y :~τ we have (ν~y)(Q1;2jR) +e Q0
for some Q0

. Then

Q1�= Q2.

In the statement above, observe we first choose an arbitrary ?-part of the given action
type.

Proof. Below Q1;2 andA are as given above, and we letB
def
= ~y :~τ andC

def
= A=~y.

Q1
�= Q2 , 8` R . A
u :B : (ν fn(A))(Q1jR) +i

x , (ν fn(A))(Q2jR) +i
x)

, 8` S . B:8 ` T . C
u :B : (ν fn(A))(Q1jSjT ) +i
x , (ν fn(A))(Q2jSjT ) +i

x)

, 8` S . B: (ν fn(B))(Q1jS)�= (ν fn(B))(Q2jS)
( 8` S . B: (ν fn(B))(Q1jS)� (ν fn(B))(Q2jS)
( 8` S . B: 9Q0: (ν fn(B))(Q1jS) +e Q0 and(ν fn(B))(Q2jS):

The first equivalence is by Proposition 5.2 (2) . The second equivalence is by taking
each compensating replicated term to be a prime whose only free name is its subject
(this does not lose generality since, by extended reduction with other replicated processes,
all ?-moded free names can be compensated and eliminated). For the third equivalence,
the “only if” direction is by contradiction, while the “if” direction is by noting, at type
x : B , the correspondence in convergence and�= coincide. The last two (reverses) impli-

cations are, respectively, by���= (cf. Proposition 5.3) and by$�� (cf. Theorem 4.1).

Below we only show the case forlet x = zF in F 0 (other cases are easier). Write( )?u for

[[( )Æ]]u. Assume[[F 0]]u
def
=!u(~w):P. Then we have, using the induction hypothesis, extended



reductions and Lemma D.1,

(let x = zF in F 0)?u
def
= [[F 0ÆfzFÆ=xg]]u
� (ν x)(F 0?

uj(zF)?x)
�= (ν x)(!u(~v):P j [[zF ]]x)
�= (ν x f )(!u(~v):P j !x(~w):Arghz f~wi j [[F]] f )

Let the resulting term beS1. We compareS1 with the direct translationS2
def
=!u(~v):z( f c)([[F 0]] f jc(x):P).

For this purpose we composeSi with Q
def
=!z( f c)c(x)!x(~w)Q0. Note that we can assume any

compensating process atz has this form without loss of generality (byη-expansion). Im-
mediatelyS1jQ 7!+ (νx f )(!u(~v):P j !x(~w):Q0 j [[F ]] f ) jQ, while, for the right-hand side, we
have:

S2jQ 7!+ !u(~v):(ν f x)([[F 0]] f j!x(~w)Q0jP) j Q
�= (ν f x)(!u(~v):P j !x(~w):Q0 j [[F 0]] f ):

We can now use Lemma D.2.

D.6. PROOF OF LEMMA 5.4

For (1), writeQ1 (resp.Q2) for the process on the l.h.s. (resp. r.h.s.) of the equation for
brevity. By the conditions on typability and by ENFs, we should have` O Q1;2 . z : τ"
 x :
ρ! 
?A for someA. We prove the following claim, which easily entails (cf. Lemma D.2 in
Appendix D.5) the required equality.

Claim. Assume, for each `I U . A
 x : ρ, we have (ν fn(A)x)(QijU) +e Q0 (i = 1;2) for
some Q0. Then Q1�= Q2.

To prove the claim, letA = /0 for simplicity, which does not lose generality since processes
compensatingA are simply absorbed intoQ1;2 by extended reduction, resulting processes
in the same shape. For the same reason we safely assume the occurrence ofx in each term
is unique. Thus we composèI!x(~rc):S. x :ρ to both sides and demonstrate the claim. By
Proposition 3.3 and by notingfn(RjS)� f~rcg, we have(ν~r)(RjS) + e cini(~wi)T for some
T . Assume further(ν~wi)(T jPi) +e P0i . ForQ1 we obtain:

(νx)(Q1 j !x(~rc):S)
def
= (ν x)(x(~rc)(R j c[& i(~wi):z(e)!e(~y):Pi]) j !x(~rc):S)
7!+ (ν~rc)(R j S j c[& i(~wi):z(e)!e(~y):Pi])

7!� (ν c)(cini(~wi)T j c[& i(~wi):z(e)!e(~y):Pi])

7! (ν~wi)(T j z(e)!e(~y):Pi)

7!� z(e)!e(~y):P0i

ForQ2 we have:

(νx)(Q2 j !x(~rc):S)
def
= (ν x)(z(e)!e(~y):x(~rc)(R j c[& i(~wi):Pi]) j !x(~rc):S)
7!+ z(e)!e(~y):(ν~rc)(R j S j c[& i(~wi):Pi])

7!� z(e)!e(~y):(ν~wi)(T j Pi)

7!� z(e)!e(~y):P0i

hence as required.



For (2), since a linear output cannot occur freely under a replicated input, given a se-
quential !u(~xz):P with z of type (τ)", we can writeP asC[z(c)P1]::[z(c)Pn] where either
P � z(c)P0 or each hole is under a linear unary/branching prefix. Treating w.l.o.g. unary
prefix as a special case of branching prefix, we prove (2) by induction on the depth ofz
in P, where thedepth of z in P is the maximum number of prefixes from the subject ofP
to an occurrence ofz in P. If the depth is zero, there is nothing to prove. Let the depth
be n+ 1 and letP � C[x(~re)(Rje[& i:z(c)!c(~y):Pi])] where the mentioned occurrence ofx
is the deepest one (by which they can only occur immediately aftere). By (1) above,
P�=C[z(c)!c(~y):x(~re)(Rje[& i :Pi])]. By induction hypothesis we are done.

(3) is because the transformation in the proof of (2) can be carried out incrementally.


