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We introduce a typed-calculus where strong normalisation is ensured by typa-
bility. Strong normalisation is a useful property in many computational contexts,
including distributed systems. In spite of its simplicity, our type discipline cap-
tures a wide class of converging hame-passing interactive behaviour. The proof of
strong normalisability combines methods from typedalculi and linear logic with
process-theoretic reasoning. It is adaptable to systems involving state, polymor-
phism and other extensions. Strong normalisation is shown to have significant con-
sequences, including finite axiomatisation of weak bisimilarity, a fully abstract em-
bedding of the simply-typedl-calculus with products and sums and basic liveness
in interaction. Strong normalisability has been extensively studied as a fundamental
property in functional calculi, term rewriting and logical systems. This work is one
of the first steps to extend theories and proof methods for strong normalisability to
the context of name-passing processes.
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1. INTRODUCTION

Background. The formal study of types in programming languages and computational
calculi has led to the understanding that types can ensure a wide range of desirable com-
putational properties, ranging from error-free execution to precise logical specification of
program behaviour. One important property in this context, widely found in typed
calculi, isstrong normalisation (SN), which says that computation in programs necessarily
terminates regardless of evaluation strategy. This is interesting from a logical viewpoint
especially because, by the correspondence between proofs and programs, SN of certain
A-calculi implies consistency of the corresponding logical systems. For this reason, func-
tional calculi and logics have been the main focus in the study of strong normalisability.
The significance of SN is, however, not limited to this traditional setting. SN is also in-
teresting in the context of communicating processes. As an example, consider a distributed
client-server interaction: when a client requests some service, s/lhe may naturally wish the
computation on the server’s side to terminate and return an answer. SN is thus a basic re-
guirement for, say, interaction between banks and their customers. As another example, the
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resource preservation guaranteed by SN has been one of the main reasons for Gunter and
his colleagues to develop their typed programming language for active networks (PLAN)
[25,54] on the basis of a simply typ@dcalculus. Such languages would in general re-
quire primitives for communication and concurrency. This suggests a systematic effort to
extend the accumulated theories of functional SN types to the realm of interactivity is a
worthwhile endeavour.

We are thus motivated to reposition and study strong normalisability in the context of
process theory. In particular, is there a basic typed process calculus in which strongly nor-
malising functional calculi are faithfully embeddable? By faithful, we mean that typability
of the encoding automatically ensures strong normalisability of the source calculus. More
ambitiously, can we obtain exact semantic correspondence, including full abstraction and
full completeness? Obtaining affirmative answers to these questions would not be of mere
theoretical interest: since typadcalculi offer a basic theory of procedure calls, a funda-
mental abstraction in programming, embeddability of SN functional calculi would capture
interactive behaviour powerful enough to involve non-trivial procedural calls while main-
taining SN. Exploration of strong normalisability in this broader context might also shed
new light on typed functional computation itself.

The present work is a trial in this direction, introducing a typechlculus in which first-
order strongly normalising-calculi are fully abstractly embeddable. The type discipline
simply adds causal chains to the system introduced in [11] where we established a fully
abstract encoding of PCF. This small addition radically changes the class of typable process
behaviour, turning possibly diverging computation into a strongly normalising one. As
would be imagined by the embeddability of typeaalculi, the proof of SN is non-trivial,
defying naive structural induction. We adapt methods developed for strongly normalising
A-calculi[8, 23, 61], combined with process-algebraic reasoning techniques [11,51, 53,57,
66]. As far as we know, this is the first time a compositional principle for ensuring SN has
been established for name passing processes with non-trivial use of replication. The proof
method for SN is applicable to significant extensions of the presented formalism, including
state and polymorphism [12, 32, 35,67, 68]. Further discussions on these extensions are
found in Section 7. In the following, we outline key technical ideas and relate our work to
the existing literature.

TheTteCalculus. Following [11], we use an asynchronous variant ofihealculus [31].
Computation in this calculus is generated by interaction between processes.

X(¥)-PIXV) — P{V/y}

Herey denotes a potentially empty vectpr...yn, | denotes parallel compositior(y).P

is input, andk(V) is asynchronous output. Operationally this reduction represents the con-
sumption of an asynchronous message by a receptor. The idea extends to a receptor with
replication

IX(Y)-PIX(W) — X(¥).P|P{V/¥},

where the replicated process remains in the configuration after reduction, which behaves
as a shared resources or a remote server. As a simple example of a process, first consider
theforwarder agentru(ab)

Fu(ab) £'1a(x).b(x)



which repeatedly inputs a valueatand outputs it immediately &t As another example,
the following is a client which requests, éato have a value returned via a private name
c

alc)c(y).P

wherea(c) c(y).P stands for(vc)(a(c) | c(y).P) with (vc) being a restriction operator. Us-
ing these agent® below is a simple way to represent what may be regarded as a denial of
service at.

RE Fu(aa) |a(c) c(y).P
This process does not directly demonstrate circularity as in the example above. However,
sinceR causes an infinite reduction sequence, the recegiorP waits forever for an
answer at. In an untyped settindris equal tcea(c) c(y).P up to asynchronous bisimilarity
[31], but the two are quite different regarding resource consumption. The next example
shows how subtleties arise through new link creation ofrtizalculus.

a(x).Fw(bx) | a(c)Fw(ch) | b

After one step reduction via, we obtain

Fu(bc) | Fu(ch) | b

which exhibits divergence.

TypeDisciplinefor SN. The type discipline of this paper is a simple refinement of [11].
Concretely, the system is based on two central ideas:

(1) Linear types[22,42,44,66], which ensure that a channel is used exactly once for
input/output and, for a replicated channel, an input occurs exactly once and output occurs
zero or more times [11, 40, 50, 53, 57].

(2) Action types with causality, where causality is represented by edges in a directed
graph whose acyclicity ensures the absence of circular dependencies [42, 44, 66], cf. [22].
Transmission of causality is controlled by a formoof elimination in action types.

Let us illustrate these points by examples. In the standard typing systemmttieulus
[50, 64],Fu(ab) is typed as follows:

F Fu(ab)>a: (1) ® b: (1)

wherea: (1) represents that nangeinputs or outputs value with type ® represents the
disjoint union of channel types (often writtem *(1),b: (1)"). As first refinement, we
attachaction modes to types to ensure the linearity of channels. To simplify discussions,
here we use only two modes, “!” and “?”, which represamtjue server andclient requests

to server, respectively. Let us assunie(ab) % 2.6 which does not carry any name for
simplifying examples. This process has the following type.

+Fw(ab)>a:() @b:()? (1)

This type means that a unique replicated input (server) exigtgatb is a channel that
is used for service requests from a unique replicated serve{HQd, 11,27,57]. When



composing processes, cut elimination occurs between input and output on a shared name
with dual types. Here ! and ? are dual to each other, cf. [22], so that cut elimination occurs
between()' and()?, resulting in()" since the server can always consume a client request.
Thus the composition dfw(ab) andFw(bc) is typed as:

- Fu(ab) | Fu(bc)pa: () @b: () @c:()7. 2)

The ideas similar to the refinement above were already presented in [10,11,27,42,57].
But none of those typing disciplines ensures termination of processes. In fact, the diverging
process in (1) is still typable as follows.

+ Fu(bc) | Fu(cb) > b:()' @ c: ()’ (3)

In the light of such examples, the second refinement introduces the idea to record causality
of behaviour in types. For examplgg{ab) is now typed as follows:

+Fu(ab)ya:()' = b:()?

Herea:()! — b:()? indicates that the process repeatedly inputs and then outputs at
b. Cut elimination now occurs between dual input and output by keeping the causality
between channels. For example, we have:

(@:()' = b:()M) @ (b:0)' =c:()?) = (@0 = c:0)@0:() =c:()?)
hence we can type the process in (2) as:
- Fw(ab) |Fu(bc)pa: () — c: ()’ ®@b:()! = c:()?

Now we can detect a cyclic dependency suclEw®c) | Fw(cb) in (3) by looking at their
typesb:()' — c:()? andc:()' — b:()? [32, 40, 66] (which, when combined, induces a
vicious circle). This simple causality information turns the system with possibly diverging
processes [10, 11]into a strongly normalising one. The type discipline based on these ideas
is formally presented in Section 2.

Proving SN for the=Calculus. To prove SN for typable processes, the first idea would
be, in the light of the previous examples, to show that reduction steps follow a non-circular
ordering on free channels, e.g. the reductiona(@f|Fw(ab)|Fw(bc) proceed af, b and

c in this order, but ina(v)|Fw(ab)|Fu(ba) are repeated betweenandb. However, due

to creation of new links and replication of terms, both being crucial featurescafculi,

such reasoning is infeasible, at least in its naive form. To see this, consider the following
process which only adds one name restrictiaft)” to CCS term:

ra(x).(X/x) | a(c)Fu(cb) | 'b.(aly)[aly)) (4)

(this process is typable () ?)' @b:()' — y:()? as we shall see later). The process owns
reductions first af, then atb, then ata again. Further, the number of redexes increases
exponentially in its coursdaut the computation terminates. Such behaviour occurs when a
process requests the same resource more than once in an interaction, e.g. in an encoding of



theA-termAxyz. ((xz)(yz)) [49]. The difficulty in analysing (4) can be seen by considering
the following subterm of a one step descendant of (4).

(vo)(c|T|Fa(ch))

It contains a chairt — b, which is difficult to determine before is passed. But if we
naively represent causality incorporating bound names in (4), there is a circulaachain

¢ — b — a, although this cycle never arises in actual interaction. How can we then prove
termination? Simple structural inductions would not be usable for the same reason they do
not work in typedi-calculi [8, 20].

The idea we use is suggested by SN proofs for typedliculi, due to, among others,
Tait [61]. His method employs a semantic interpretation of each[fgpas a collection of
strongly normalising\-terms, and shows that all typable terms are indeed in these sets. A
key stepis to prove thaix: 0.M € [Jo — 1)) for eachM : T (for which by inductiorM € [[t])),
which means, by definitiofAx.M)N € [[1]] for eachN € [[0]]. But all semantic types have
the property thaM{N/x} € [[1] and(Ax.M)N — M{N/x} imply (AXx-M)N € [1]], hence
we have only to show1{N/x} € [t]]. To be able to do this we strengthen the induction
hypothesisvl € 1] to M € [[t]|, for each environmerg, mapping each variable of tyge
to some term iffo]]. Now the result is immediate [8, 20]. While we cannot use an identical
framework due to the different nature of reduction in thealculus, a similar technique
works “for the induction to go through”. A key observation concerns the close correspon-
dence between the substitutibi{ N/x} and the consumption of a messagje) by a repli-
cated procesx{y).Q. Thus, at each induction step, we prove tRR1|...|R,) converges
for each possible “environmenRy|...|Ry which complement®. Termination behaviour
is calculated via the extended reduction suggested by strong bisimilarity (which does not
change termination) together with replication theorems [11,51,57]. Finally acyclicity in
causality yields strong normalisation.

Summary of Contributions. The following summaries main technical contributions of
the present paper. (4) solves an open problem in [49] for the simple type hierarchy.

(1) Introduction of a lineart-calculus in which where strong normalisability is ensured
by typability.

(2) Establishment of the proof methodology for strong normalisability of typable pro-
cesses, combining ideas from traditional SN proofs for typedilculi with process-theoretic
reasoning. We also show the result extends to the lireeaculus with free name passing
via encoding.

(3) Establishment of the finite axiomatisation of the weak bisimilarity in linear pro-
cesses as a consequence of strong normalisability. The axiomatisation yields an effective
procedure to compute equality over linear processes via their normal forms.

(4) Embedding, using Milner’s encoding [49], of the simply typedalculus with
sums and products\(; « ;) into our typedrecalculus. The embedding is fully abstract
w.r.t. the observational congruenceiaf, ,. ., justifying all commutative conversions and
n-equations [6, 18, 19, 23], automatically leading to SN in the source calculus.

(5) Establishment of a basic interaction-based liveness property in linear processes via
their strong normalisability, bridging the traditional notion of SN and one of the basic
properties in concurrent, interactive computation.



Related Work. Strong normalisation in typeal-calculi has been studied extensively in

the past; detailed surveys can be found in [8, 20]. The present paper shows that traditional
methods for proving SN can be adapted to interacting processes, suggesting their applica-
bility to a new domain.

Abramsky extends the Curry-Howard correspondence to linear logic [22] using proof
expressions (which are proof nets in term form), and proves their SN [1], guiding our
present usage of acyclicity in names. This programme is taken further with realisability
semantics of linear logic in [5] where CCS processes act as realisers, using renaming op-
erators for typed process composition [27]. The operational structure of [5] follows his
own Ti-calculus encoding of proof nets [2], offering a process-algebraic understanding of
semantics of linear logic. The appeal of realisability lies in treating semantics and syn-
tax uniformly on a logical basis. In the context of SN types for thealculus, sharing
of names and dynamic link creation in thecalculus would make it difficult to directly
apply the framework in [1,5]. In comparison, the present work offers a basic type disci-
pline which does not directly correspond to known logical systems but which is based on
algebra of processes and simple operational principles, resulting in a new effective method
to ensure SN for name passing processes.

As our initial example of server-client interaction suggests, SN in processes is closely
related to liveness. Yoshida [66] presents a typaalculus with a local liveness property.
Kobayashi and his colleagues [38,40-42] propose several typing systems which ensure
different forms of liveness; for example [41] time quotas are assigned to communications
for this purpose. Sangiorgi [56] proposes a typing system to guarantee what he calls re-
ceptiveness, which means that an appropriate input prefix is always available. Unlike the
present work, these and other preceding typing systems-éaiculi [11, 26, 27,55, 57]
do not guarantee SN and the associated liveness properties for processes involving non-
trivial use of replication. As a result, embeddability of, say, in these systems does not
guarantee the SN of the source calculus.

Since the present work was reported in [68], Sangiorgi has proposed a strong normalis-
ing typing system for thetr-calculus with summation and first order recursive agents. He
explicitly adds a global name ordering in processes [58] (this ordering is close to a prop-
erty derived in our typing system, cf. Proposition 2.1) to ensure strong normalisation. His
proofs are similar to ours, using type-directed predicates for termination. His types do not
seem to ensure liveness at linear channels. A fully abstract embedding of existing calculi
as presented in the present work and the finite axiomatisation of the weak bisimilarity are
not reported in [58]. On the other hand, his system can type processes with first-order state
(we note that the corresponding result in our setting was discussed in [68, Section 6], see
also Section 7 and below), showing another operational investigation for termination in the
T-calculus.

A basic feature of our approach is that we construct an integrated calculus combining
restricted calculi with clear behavioural characterisations in a bottom-up fashion, cf. [10,
35]. This leads to, among others, a proof methodology for strong normalisability which
smoothly extends to other classes of behaviours such as stateful, polymorphic and concur-
rent computation. For example, [12] establishes strong normalisability of linear processes
with second-order polymorphism using the extension of the present proof method based on
reducibility candidates induced by double-negation closure, cf.[22]. [67] extends the proof
method in the present paper to obtain strong-normalisation of first order state, combining
it with recent proof techniques of termination in Classical Logic [43,62]. These results



can further be augmented to proving liveness in the presence of non-termination and non-
determinism by mixing type structures [11]. This incremental nature of type structure also
leads to significant applications of SN to semantics of processes. For example, [69] reports
a new bisimilarity method associated with linear type structure and strong normalisability
and presented its applications to secrecy in programming languages [16, 59, 60]. In another
paper [35], we adapt these results to a practical direction, proposing and verifying the new
typing systems for secure programming languages based on linear/affinertgpalli,
where strong normalisability and linearity play a fundamental role in the analysis.

One of the basic aspects of the type structure in the present imptk;output modes
(cf. [4,37,50,53]), has its incarnation in the context of Linear Logic, yielding its variant
calledPolarised Linear Logic (LLP) [47, 48], studied by Olivier Laurent. Proof nets for
LLP are faithfully embeddable in the replicated fragment of the present calculus (i.e. the
sub-calculus which only use !-? types), preserving dynamics. Acyclicity in name usage
in the presented type discipline corresponds to the so-called Lafont-Regnier condition in
proof nets. These connections shed light on the constructions in the present paper from
a logical viewpoint, enriching its understanding. As key differences, the constructions
in LLP bear logical significance, making it an effective medium to relate computation
and proofs; whereas the present type discipline captures SN in the framework of basic
process-theoretic operators (parallel composition, hiding and prefix). This process-based
approach leads to a uniform type discipline integrating SN with other classes of behaviours,
including diverging computation, state and concurrency, as exploredin [12, 32, 35,67, 69].

Structure of the Paper. This paper is a full version of [68], presenting detailed proofs,
further examples and related results. Strong normalisability ofebalculus with free
output, not presented in [68], is discussed in Section 6. One of the main purposes of
this paper is to present the central ideas of, and core proof techniques for, the first-order
strong normalisable typet-calculus, as a basis of their further extensions and appli-
cations. The reader interested in further work associated with this paper may refer to
[12,29,32,35,67,69]. In the rest of this paper, Section 2 introduces the syntax and the
type discipline of the first-order linearcalculus. Section 3 proves the main result, strong
normalisability. Section 4 presents a complete axiomatisation of weak bisimilarity in linear
processes. Section 5 gives a fully abstract encoding of the simply hjpattulus with

sums and producta\(; » +) in the calculus. Section 6 extends the results in the previous
sections to the calculus with free name passing. Section 7 discusses related results, among
others establishing the liveness property of linear processes.

2. PROCESSES AND TYPING

Following [10, 32, 68, 69], we use the asynchronous version afitb@&culus [14, 31] with

bound output [56]. We can use free output with precisely the same results, as we shall show
in Section 6. However, the proofs for the main results (strong normalisability, axiomatisa-
tion of bisimilarity and fully-abstract embedding) are more lucidly presented with bound
outputs, cf. [10,12,56,68]. Lety,..., a,b,... range over a countable set of names (also
called channels). The set of untyped terprecesses, is given by the following grammar.

P = x(¥).P input | P|Q parallel | O inaction
X(Y)P output | (vx)P hiding | IX(¥).P replication



(Structural Rules)

(S1) Plo=P (S2) PIQ=QIP (83) PI(QIR) = (PIQ)R

(84) (vx)0=0 (S5) (VX)(VY)P= (vy)(vX)P

(S6) (VX)(PIQ) =((vX)P)|Q (x¢M(Q)) (S7) X(¥)z(W)P =Z(W)X(Y)P (x,z¢ {Wy})

(S8) (VZX(HP=X(Y)(vP (z¢ {3}) (S9) X(¥)(P|Q) = (X(¥)P)|Q ({y}N(Q) =0)

(Reduction)

(Com) x(¥).P|X(¥)Q — (V¥)(P|Q) (Res) P— Q = (VX)P — (VX)Q

(Comy) !x().P[X(VQ —!X(¥)-PI(V)(PIQ)  (out) P— Q = X(H)P — X(V)Q
(Par) P— P = PIQ — P|Q (Cong) P=P' —Q=Q = P—Q

FIG. 1. Reduction and Structural Rules

The bound/free names are defined as usual. We assume that names in § aee{watir-
wise distinct. Up to structural equality, the outpt§)Q acts like (v¥)(X(¥)|Q) in the

standard syntax. The reduction relatienand the structural congrueneeare defined in

Figure 1. The multi-step reduction— is given as—» ey

As a S|mple example of processes and their reductlompyacat agent [37] is given by
[x —> y] —'x( ¢).y(c')c’ ., which links two locations andy. Theomega agent is defined as
Q,% (v y)([u = Y]|[y — u]), which immediately diverges when it is interrogatediat

2.1. Types

Action Modes. The following pairs ofaction modes[11, 32] prescribe how each channel
is used in typed processes.

4 Linear Input 1 Linear Output
I Serverinput ? Clientrequestto!

“}” mode is associated with an input (e.g.in x(y).P) and “I" mode is associated with
a replicated input (e.gx in !'x(y).P). “1” (resp. “?”) mode is associated with an output
delivered to 4" (resp. “I"). For example, iX(¥)P is composed witx(y).P, thenx in X(¥)P
has at -mode, and if it is composed witkx(ly).P, thenx has a ?-mode. We also use the
mode] which guarantees uncomposability of linear channel; for exampieQ ifias a|-
mode andk has af-mode, therx.0| X has}-mode atx. TheJ-mode atx indicates that the
procesx.0| X cannot be composed with any process thattesa free name.

We letp,q,... range over action modes. pf# J, we write p for thedual of p, a self-
inverse map on the action modes such thatt andi = ?. The four modes correspond to
11,71, and % introduced in [11], except that the present modes indicate true linearity for
linear channels (i.e. input and output interact precisely once) rather than affinity (i.e. input
and output interact at most once) and lack of divergence for replicated channels.



Channel Types. Next we definechannel types by the following grammar. Belowp,
(resp.po) denotes input (resp. output) modes.

T:=T1|T|] T, o= (To)P T, = (T,)P

The IO-alternation constraint (names used for input carry only output names and vice
versa) comes from game semantics [4, 34,37]. This condition is not essential for SN but
simplifies presentation and proofs. For characterising sequential interaction, we may add
further constraints as in [10]; we do not do so here since the proof structure of strong nor-
malisability does not change by having this constraint. rhéft) be the outermost mode

of 1; for  we setmd($) = J. We define® as the least commutative partial operation on
channel types such that:

1) tet=1 (MmdT) =) (2) teor=tandteT=T (Md(1)="7?)

Intuitively, (1) says that once we compose input-output linear channels, the channel be-
comes uncomposable. (2) says that a server should be unique, but an arbitrary number
of clients can request interactions. For exampe) |!!x.0 is never typable because of

O' # (', while x| X is typable byx: ()?, and X.0|X|X by x: (). This partial algebra of
channel types ensures, among others, determinacy of computation in typable processes by
controlling their composability.

Action Typesand their Algebra. Channel types are assigned to free names of a process
to specify possible usage of names. Action types, on the other hand, carry causality infor-
mation [66] and witness the real usage of channels. We first define action typastidm

type, denotedA, B, . . ., is a finite directed graph with nodes of the foxnt, such that:

e N0 name occurs twice; and
¢ edges are of the form: T — y: 1’ such that either (Ijhd(1) =] andmd(t’) =1 or
(2) md(t) =!andmd(t') = ?.

We writex — y if X:T — y: 1’ for somer andt’. If x occurs inA and for noy we havey — x
then we say is activein A. |A| (resp.fn(A), active(A), md(A)) denotes the set of nodes
(resp. names, active names, modeg).ifvVe often writex: T € A instead of:1 € |A|, and
write A(X) for the channel type assignedsxadn A. A/X s the result of taking off nodes
with names inX from A. A® B is the graph union oA and B, with the condition that
fn(A)Nfn(B) = 0. X: T — Alis a result of adding: T to A with an edge fronx: T to all of
A’s active nodes.

Itis sometimes useful to write down action types syntactically, in which case we generate
action types from the following grammar:

A:=0| a1t | AB | ait— (b:1®b:12---®b:Tp)

where we assume, a1 — (b:11®b:12---®b:1y), thatt is of mode| or ! and, accord-
ingly, T; is of modet or ?. We allow, inA® B, two different names with the same ?-type
to occur in bothA andB; otherwise we prohibit shared usage of names. We shall often use
this notation in examples.

The symmetric partial operator on channel types is already given before. We extend
this operator to action types as follows. First, a symmetric relation action types is
defined as followsA = B iff:



beco! o] d:@'
ny  a < ® b < — aw e g b: |
c:@ e® co

7

o b’ 47 b —— dO

@  a@ < ® b < — awg e’
c:@?

em’ c:@®?

FIG.2. Composition of Action Types

e whenevex:T € Aandx:1’ € B, 1o 1T is defined; and
e whenevex; — Xz, X2 — X3, ..., — X, alternately inA andB (n > 2), we havexy # Xn.

Next we extend> to action types.A® B is defined iffA < B and, if so, is given by the
following action type.

e X:T € |A® B| iff either (1) x € (fn(A)\fn(B)) U (fn(B)\fn(A)) andx:T occurs inA or
B;or(2)x:t e Aandx:1" e Bandti =1 o 1".

e X VYINAGBIff x=21 22,20 2,...,z-1— 2z, =Yy (n> 2) alternately inA and
B and, moreover, for nav we havew — x and for now’ we havey — w' in eitherA or B.

We can easily check the following property®f See Appendix A.2 for the proof.

LEMMA 2.1. ® on action types is a symmetric and associative partial operation
with identity 0.

We illustrate how this operator works via simple examples.

ExampLE 2.1. Figure 2 shows two examples of composition between action types us-
ing ®. In the linear case, ordering from/to nodelisappears. On the other hand, in the
replicated case, we keep the original ordering becabigg.P remains persistent. The
same examples can also be written down syntactically, using the grammar of action types
introduced before as follows.

1) a@‘—=b:@Mec®h) o b() = (d:®M e (D))
=a@t-cOed@ee®m)eb]

2  a(m) = b:@’®c:()?) ©b:(1) = (d:(1)’®e:(1)?)
= a @ =@ ed:@2e®’)2b: (1) = (d:(1)°2e:(1)?)

Note shared ?-channels are duplicated in the syntactic representation.



(Par) (Res) (Weak)

(Zero) FRe>A (i=12) FPpAT FP>AX

- AL <A md(t) € {1,!} md(1) € {1,?}

FOb_ FPLIP > A1OA2 F(vx:T)P>A/X FPrA®X:T

(In%) (In") (Out)

FP> YT+ AX® 2B P> YT 2AX FP> AT Axx:(T)P

Fx(¥:T).P> (x: (T)'—A) ®B FIX(§:T).Pex:(T) —=A FXYP>A/JOX:(T)Po

FIG. 3. Linear Typing Rules

2.2. Linear Typing
We are now ready to present the typing rules for strong normalisability. The rules are given
in Figure 3, using sequent of the forhin the typing rules we use the following notations:

o A¥Tis Ain which eachy;: T; in ¥:T occurs.
e AXis Asuch tha ¢ fn(A).
e pAmeansA such thaind(A) = p.

We sayP istypableunder A, orP hasactiontypeA, if F P> Ais derivable. Brief illustration
of each rule in Figure 3 follows.

(Zero) starts from the empty action type.

(Par) usesx< and® for controlling composition (which in effect ensures both determi-
nacy and strong normalisability). For exampleRihas typex: () T andQ has typex: ()T,
thenP| Qs not typable becauge’ % ()T.

(Res) allows hiding of a name only when its action modeisr ! (which intuitively
says that channels of modgs| or ? should always be compensated by their duals before
they are restricted).

(Weak) weakens| and ? since we allow the possibility of having no action at these
channels. Formally the weakening of these nodes is necessary for having subject reduction.

(In¥) records the causality from linear input typg(?)* to linear output types. The side
conditionA~* andB~* ensure linearity (i.e. unique occurrence)xofFor 10-alternation,
we let all free names under an input be outputs [10, 11, 35, 69].

(In') records the causality from replicated input type to ?-types. The side condition
A% is required to ensure acyclicity. Of course we cannot alfetypes in the body, for
otherwise linearity would be lost. For examplezifs linear channel, therx{y).(z| Q)
should be untypable becausis copied at each interaction.

(Out) does not suppress the body by prefix since output is asynchronous. Essentially the
rule composes the output prefix and the body in parallel. This rule can be understood by
translatingk(y)P to (vy)(X(¥) | P): suppose® has a typeA. First we checlA < x: (T)Pe,
then if defined, we hidg from A® x: (T)P°, whencex(y)P has typeA/y e x: (T)Pe.

1We prefer the formalt P> Ato A+ P. This is becausé in - P > A abstracts the behaviour Bfrather than
its environment. This point would be elucidated when we discuss translativreatulus in Section 5.



EXAMPLE 2.2.

e A copy-cat copies all information from one channel to another [4, 37], one instance of
1 def

which appeared already. We show, step by step,[mew x| =!u(a).x(b)b.a, the copy-cat
fromuto x of typet = (()1)", can be typed:

1) +0»0,

(2 Fasa:()f,

(3) Fbavb:()t—a:()l,

(4) Fx(bbarx:Tza:()' (byb:()* - a:()T/b=a:()") and;
(5) Fu(a)x(bbaru:Tt—x:T (byx:T®a:()T/a=x:7).

In this derivation, the length of paths in action types does not exceed 1 even when the
term gets bigger and bigger in size. In fact, we can show that all paths in action types of
derivable sequents have length 0 or 1.

e First we havet- a.(b|c) > a:()* — (b:()T@c:()7) andF b.d > b: ()* — d:()!. Then

1) Fa|g)|bdra:()t— (c:()'@d:())®b:} (by(Par), and
(2) +(vb)(a(blt)|bd)ra:()t = (c:)T@d:()T) (by(Res)).

e The connection of two links (copy-cats) is typed as:
Fix=y'y—=2"> (xT—=zT)®(y:T— 27

with X:T— y:TOY:T— z:T=X:T— z:T. However,[x— X" and[x = y]' | [y = X[
which represent cyclic forwarding are untypable by the side conditiohin (In') and by
definition of <, respectively.

Remark. In[10, 11, 32,66] as well as in the early version of this paper [68], we used
the two-sided sequentt P > A wherel is a standard environment which maps channels
to pair types (of the form{t,T)) and A records the action modes attached to names and
causality between names. For example, the copy cat in Example 2.2 (1) is typed as

YT, DX (T, T F[Xx=y]'sIx—%

where(t, T) denotes a pair of input and output types. The typing in this format is similar

to those proposed in [17, 38] where types are CC8&tarms. Compared to [17, 38], the
syntax of action types of the present type discipline (in this format) is simpler since the
maximum path length is at most 1; hence an action type is essentially representable as
parallel composition of!)a.(b | ...bn). The merit of two-sided sequent is its clear division

of behavioural constraints into channel types and causality. It may also be useful for type
inference. The merit of one-sided sequent is its conciseness and its (potential) faithfulness
to semantic content of typed processes. Single- and two-sided sequents result in equivalent
typability; the present paper uses the single-sided sequent because it gives a more concise
representation of semantic types.



2.3. Basic Properties of Typing System
Next we discuss basic properties of the typing system. We begin with name usage in typed
processes which form the basis of our later proof of strong normalisablity. Below the first
property says linear input/output channels and replicated channels occur precisely once in
a given process. Acyclicity, the second property, says that the typing rules ensure global
partial order between free names via compositional, local type-checking. This property
becomes crucial in our SN proof later.

PROPOSITION 2.1. Let+ P> A.

(1) (linearity) If x:t € Aand md(1) € {J,1,!}, X occurs precisely oncein P.

(2) (acyclicity) G(P) denotes a directed graph such that; (i) nodes are fn(P); and
(i) edges are given by: x ~ y iff P = (vZ)(Q|R) such that Q = x(W).Qo or Q =!x(W).Qo
wherey € in(Qo), X ¢ {Z} andy ¢ {ZW}. Acyclein G(P) isa sequence of formx~y1...
yn X (n > 0) with y; # x. Then G(P) has no cycle.

Proof. Both are by induction on the typing rules. (1) is mechanical. For (2), we show
that if - P> Athenx:t — y:TU in Aiff X~ ... ~ yis a maximal non-cycle if. This is
proven simultaneously with: if there are name-disjaint> X2, X3 — X4, ..., Xon—1 — Xon
then the corresponding maximal non-cycles do not overlap in names, again by induction
on the typing rules. The key case(iar), the only rule which extends the chain. Assume
X1 = X2, X2 —» X3,...Xn—1 — Xn in AW B andx; — X, in A® B. By inductive hypothesis there
are the corresponding maximal non-cycles. In them, names used in different cyéles in
(resp. inB) never overlap with each other. Further, since intermediate names in these non-
cycles have either mode ! or moglethese names do not overlap betwéeandB either.

Thus the result of connecting all these non-cycles again gives a non-cycle, which clearly

corresponds t&@; — xp, as required. |

Remark.  In Proposition 2.1 (2), the notion of chain does not include the case where
an intermediate channel is restricted (unlike [1]). While such cases can be included, they
are not necessary in the proof of strong normalisability given later, cf. Lemma 3.3. Also
note that this property is derivedposteriori by defining a composition operator on types,
in contrast to [58] which assumes this global condiqguriori.

Next we list basic properties of the reduction relation in typed processes. In (3) below and
henceforth we use the following notations.

ePIQ ¥ P Q.

e PU L 30P Q. FurtherPt & vneN PN,
e sN(P) & Py,

e CSN(P) &' SN(P)A(PY Q1= Q1 =Qy).

PROPOSITION 2.2. Let+ P> A.

(1) (subject reduction]f P —* Q then - Q> A.

(2) (strong confluencelf P — Qi (i = 1,2), then either Q1 = Q2 or there ezists R
s.t. Q— R (i=1,2).



(3) (determinacy)Let - P>A. (i) P— P’ and SN(P') imply SN(P). (ii) P Q;
(i=1,2) imply Q1 = Q2. And (i) P < SN(P) & CSN(P).

Proof. (1) uses Lemma 2.1. See Appendix A.2. For (2), we note that the critical pairs
arise only when a replicated inputis shared which does not change its shape. See Appendix

A.3. (3) is standard, cf. [1, 7, 36, 39], all using Proposition 2.2 (2

3. STRONG NORMALISATION
This section proves the following result.

THEOREM 3.1. (main theorem, strong normalisation) -P>A = CSN(P).

A few significant consequences of the theorem will be discussed in Sections 4, 5, 6 and
7. In the proof, we first introduce thextended reduction relation —, which eliminates
all cuts (mutually dual channels) in a typed process. Next we defmantic types [A],
which are sets of typed terms that converge when composed with all necessary “resources”
(i.e. complementary processes). Finally we prove that each typable process is in the cor-
responding semantic type. This part is divided into two stages. We start with showing all
normal forms are in their semantic types. Then we establish that each typable process com-
bined with resources always reaches a normal form, which implies strong normalisability
of —. In the second stage acyclicity of name ordering (cf. Proposition 2.1) becomes
crucial: we first define a reduction strategy based on name ordering, then we show any
parallel-composed normal forms always reach to a normal form by this strategy.

3.1. Extended Reductions
DEFINITION 3.1. (extended reductions) We defire,, —, and—4 as the typed com-

patible relations on typed processes modalahich are generated by the following rules.

(E1)  COPIXY)-Q =1 Cl(vI)(PIQ)]
(E2)  C®PIX(®).Q —r CIVI(PIQ]I'X(Y).Q
(E3) (VI)IX($)-Q =g O

Here we assume the term on the left-hand side in each rule is well—typé%].(r—n U
U ) is called theextended reduction relation. A process is iextended normal formif it
does not contains-redex.

The idea of— is to capture known process-algebraic laws as one step reductions:
~— and—4 correspond to th@/linear law [26, 27,42, 66], the replication law [11, 53, 57]
and the garbage collection law, respectively. As an exampie,ofie have:

Ib(y)©(2)2y[!c(2).2 = 1b(y).(v2)(2y|2)|!c(2).2 = b(y).y|!c(2).2

Immediately—s C+. P |le, SNe(P) andCSNg(P) are given a$ |}, SN(P) andCSN(P)
in 8. 2.3 using— instead of—. A —-redexis a pair of subterms which form a redex for
— in a given term.

PROPOSITION 3.1.  Let all processes be typed below.

WITFP>Aand P— P then T FP 5 A.



(2)(CR) IfP—* Qi then Q —*R (i =1,2).

(3) (determinacy) If P+ P’ and SNe(P') then SNe(P). Thus P e iff SNe(P) iff
CSNe(P).

(4) (convergence) (iP|Q e implies Plle and Qle, (i) if Ple, then (VX)P {e,
and (i) Ple iff a(X).P e, (iv) Ple iff 1a(X).P Ue, and (v) P Je iff A(RX)P Ye.

Proof. See Appendix B.1. The proof of Church-Rosser proceeds by ‘postponing’ appli-
cations of—,4, |

Note the Church-Rosser property is no longer one-step.

Let us say a procedB is prime with subject x, or simply prime, if either P is input
with subjectx or P = X(y1..yn)[Mie/ P such that eacl®, is prime with subjecty; where
Mic/ P denotes then-ary parallel composition of Pi}ici (if | = 0 thenNigP = 0). In
the following proofs we use a variant of the typing rule for output prefixes which is given
by adding the conditionP = MP; with B prime with subjecy;” in the premise ofOut) in
Figure 3. We call this systeralternative typing system. Note that, in the alternative typing
system, we can assume active names under an output prefix are bound by that prefix. With
the same proof as in Appendix D of [11], we can easily check:

PROPOSITION 3.2. IfF P Ais derivable in the system in Figure 3, then for some
Po =P we have F Py > A in the alternative typing system.

Proposition 3.2 says that we can assume, without loss of generality, that all prefixed
processes are primes whenever we are discussing properties invariantu(slesh as
strong normalisability). For this reason the following convention does not lose generality
in our technical development.

CONVENTION 3.1. Hereafter in this section we assume all typed processes are
derived in this alternative typing system.

When we work in the alternative typing system, we restricso that it is generated
without (S7) and(S9) in Figure 1 (for having closure of typability underand—).
Among others the alternative typing gives a simple inductive characterisation of ex-

tended normal forms which we shall use in the proof. Below and henceforth weNfite
def

for the set of extended normal formsEe = {P | JA. - P> AandP 4 }.
PROPOSITION 3.3. NFe coincides with, up to =, the set of the processes induc-
tively generated by the following rules:

.06 NFe,
o If P e NFethenx(¥:T).P, Ix(¥:7).P, X(¥: T)P € NFe.
o If B € NFe (i €1 #0), B is a prime, and® |Pj 4 (i # j) thenMig P € NFe.

where we implicitly assume typability in each rule.

That is, a process is iNFe iff either: (1) it is inaction, (2) it is a prefix of an ENF,
or (3) n-ary parallel composition of ENFs without complementary input and output. Note
this also says that an ENF does not have substantial hiding (i.e. a lfidig such that
x € fn(P)). For the proof of Proposition 3.3, the set thus generated is immediately a subset
of NFe by definition. For the reverse direction, we use induction on tying rules of the
(alternative) typing system, notinghf € NF¢ then its subterms are alsohF. For(Res),



assumedvx)P is derived. Sinc® € NF, if X has modé, thisx is the result of weakening,
hence the hidingvx) can be taken away by. Furtherx cannot have mode ! since if so

it would result in a—-redex (of rule(E3)). For(Par) assumé1|P, is derived. Since each

P € NFe, by induction it is (up ta=) derived from one of the three rules above. If either
is derived from the first one we have nothing to prove. If not, then each is derived from
the second or the third rule (up ), and they do not share a complementary channel by
P1|P2 € NFg, thus as required.

3.2. Semantic Types
Semantic types are provably strongly normalising typed terms of some kind. We need
some preliminaries.
def =

o cl(A) = Oymeamdm)e(t,2Xi - Ti-

e LetAxBandA®B=C®X:] where} ¢ md(C). ThenA-B eic.
By cl(A), called thecomplement of A, we indicate the (type of the) environment which
gives complementary linear and replicated inputs for all free output chann&IsAnB is

a “semantic version” oA® B, where we forget inessentigichannels. Hence by definition,
md(A® B) =!. We can now define semantic types.

DEFINITION 3.2. Recally:T=y;1:T1® -+ Q¥n:Tn. Thesemantic type [A] and the
prime semantic type ((x: 1)) are defined by the following rules:

[A] £ {P>A | YQE (cI(A). PIQUeRE (A-cl(A)}

(@) L {xg:3).P | Py}
(@) € (x§:1).P | Pely:I]}
(@iax: ) E {MiaP | Pe(x:m) iel}

We note the one-sided sequent offers a simpler form of semantic types than those orig-
inally defined in [68]. We can check:

PROPOSITION 3.4. The rules of [A] and {Qic1Xi:Ti)) are well-defined.

Proof. We formulate a notion of size of types, then verify that each semantic type
is defined by semantic types of strictly smaller size. &ze of A is given byt(A) def
¥ xefn(a) AX), whereg((T)P) gef Yif(ti) +1 and§($) = 1. Write < for the ordering w.r.t.
the size of types thus defined. Bi: (T)P) < 5 #(V:T), we know that(x: (T)P)) is defined
from types of strictly smaller sizdly; : 1;]]. The same holds fof{®ix:1;)). By definition
we havetf(A) > t(cl(A) - A) > f(cl(A)). Thus[A] is defined by prime semantic types of

the same or smaller size, which, in turn, are defined from those of strictly smaller size.

Some observations:
LEmMA 3.1.

(1) If P € [A] then - P A and SNe(P).
()[A] C [A®B] and [A] C [B] with AC B. Also [A®x:1] = [A].
(3)Let P P'. Then P € [A] iff P’ € [A].



(@) Let B e ({(x:1i)) (L<i<n) such that X1,..,%, are pairwise distinct. Then
MiciP € [®iX ]

Proof. For (1), the first half is immediate, while the latter half is because of Proposition
3.1 (3). The first half of (2) is direct from the definition. The latter half is becabder
A®x:$ with x € in(P) implies that there always existas.t. P — P’ with - P' > A. For
(3), “then” is trivial from the definition offA], while “if” is by CR of —. Finally, for (4),
we notemd(T;) € {{,!}, which meansl(®x;:1;) = 0. Hence we can tak® = 0 in the defi-

nition of [®ix;:Ti]. M

3.3. Main Proofs
This subsection presents the main arguments for strong normalisability. First we show
that all (typable) normal forms are semantically typed. The difficult case here is output
a(X)P to replication &(X).Q because after reducti@iixX)P|!a(X).Q — (VX)(P|Q) |!a(X).Q,
P may interact again witha(X).Q. Our formulation of semantic types based-enmakes
the inductive argument possible.
First we prove that a typable extended normal form is an element of a semantic type.

LeEMMA 3.2. If-Pp A and P € NFe then P € [A].

Proof. ByLemma 3.1 (2), it suffices to consider only minimum action typesf(i(&) =
fn(A)). For brevity we writePipx) (p € {!,{}) for a process in normal form in a prime se-
mantic type. Also throughout the proof we $etA) = {a;} andfn(B) = {b;}. The proof
proceeds by the rule induction on the generation Bf A with respect to the rules given
in Proposition 3.3. Below giveA = ®ix; : Tj, we writeA for ®ix; :Tj.

(Inaction). By cl(0) = 0, if Q € {(cl(0))), thenQ = 0. Hence0|Q = 0 {}¢ 0 € {(0)) with
cl(0) -0 = 0, so that we have € [[0].

(Linear Input). AssumeP € [J:T® 1 A® ?B]. We showx(¥:T).P € [(x: (T)* =1 A) ® ?B].
Lett = (T)*. First we notecl((x:T — A) ® B) = A® B. LetQ € (A® B)) andR e ((J: 7).
W.l.0.g. we assume

» Q= Q1|Q2 € NFe such thaQ; = MiQuita) € ((A)) andQz = M;Qzjb)) € ((B)); and
o R=Ry|Re € NFe such thaRy £ MyRu12) € (97,252 Ti)) andRe £ M Royw) €
(@i Wi ) with {5} = {20},

By induction hypothesis,
Pl(QIR1|Rz) Ule Q2|R2 € ((@wy—y Wi :TI ® B)) (5)

Hence by Proposition 3.1 (4-i), we knd®Q |« P'|Q2 wherefn(P’) C {y}. By the defi-
nition of — this impliesx(¥).P|Q {e X(¥).P'|Q2. We now showP’ € [¥:T], which implies,
by definition off[-], x(¥).P’ € {({(x:1)). We already knowP|Q|R1|Rz —* P'|Q2|R1|Rz, while
by (5) above, we havB|Q|R1|R: —* P'|Q2|R1|R2 e Q2|R2. Note thatin(Q2) andfn(R)
are disjoint, hence there is no interaction betw@erandP’|R;|R>. Now by CR of— we
know P'|Ry|Rz e Ro € ((®w—y,Wi :T1)). This shows' € [¥:T], as required.

(Replicated Input). Similar to the previous case.
(Linear Output). Similar to and simpler than the next case.



(Replicated Output). AssumeP € [C® x: (T)?] with C/§ =1 A® 2B, Lett = (7)°. We
have to showk(y : T)P € [A® B x: 1| First we note thatl(AQ Bex:1T) = c/(CoXx:T) =
(A@B®x:T). AssumeQ € (A®B®x:T)). W.Lo.g. we can writ€Q =!x(}).Qp| Q1| Q2
where X(¥).Qp € ((x:T)), Q1 = MiQu¢la) andQ2 = M;Qyj(ib). Then we have:

XHPIQ — (vY)(PIQD) I'x(¥)-Q0 | Q1| Q2.

By induction hypothesis?|!x(y).Qp|Q1|Q2 e P'|!X(¥).Qp|Q2 such thatP' e [¥: T] with
md(Ti) € {!,4}. Hence we can writ®’ = MyRylz) | M Raew) with {y} = {ZW}. We also
note thatQj € ((®y; :Ti)). Hence, by assumption,

(VH)(P1Q0) =" (V) (MiRaigwn) [ Qp) =" (V) (M Rar(iw)) g O

Now by CR, we havé | Q {le!x(¥).Qy| Q2 € ((B® x:T)), as desired.

(Composition of Primes). Givenlli¢ P, assume by inductiof € [A] (i € I) andR,|P; &
for i # j. Note that, for eackx € fn(Ai) Nfn(A;j) (i # j) we havex:t € |Ai|N|A;j| and
md(1) =?. LetC=A1©..© AyandQ € {(cl(C))). W.lL.o.g.,

Q = Micicn(Mick<m Qi a) | T Qfuby)

where {a }1<k<m iS the set of linear output channels it and {b;} is the union of
all replicated output channels fromy,...,A,. By inductive hypothesis (the first part),
we haveR |Q Je P [ Mhyi (Mi, Q) with P € ((Ai - cl(A))) for eachi. Since only repli-
catedQ/ is shared amon@i, by ®cl(Aj) D B and @(A - cl(A)) = C-cl(C), we have
MR [Q Ue NP |M; Q) € ((C-cl(C))), as required. We have now exhausted all casiis.

We use the following corollary of Lemma 3.2.
COROLLARY 3.1.

(1) Suppose in(P) = 0 and P —* P’ € [0]. Then P 0.
(2 If - P> x:T € NFe with md(1) € {J,!}, then P € ((x:1)).

Proof. Both (1) and (2) are straightforward by the above lemma and Lemma 3.1 (3) and
(4), respectively. m

We can now establish the main lemma.

LeEmMMA 3.3. (mainlemma)Suppose =P > A. Then P|Q e for each Q € [[cl(A)].

Before giving the proof, we discuss its key ideas informally. The proof argues by
induction on the typing rules. Given Lemma 3.2, prefix and restriction become trivial,
but parallel composition causes a couple of problems. Evemhfdnd (a|!b.c) are in
NFe, their composition (with environment.D) allows reductions. How can we prove
termination? The key idea is to contraet-redexes from the end of the order of names
crbmaas:

lab|al!bc|!c.0 —, 'ab|a|'b.0|!c.0
— !a.0|a|!b.0|!c.0 —, !a.0|!b.0|!c.0



and prove that this reduction strategy terminates due to acyclicity of names. This strategy
also works for the more complekprocess which corresponds to the term in 8.1 (4).

la(x). (x| %) [&(c)ch| tbaly)ly.y =2 lax).(x|%) | (ve)(leh|c|o) |b.(vy) (Y9 |Y)
—% 1a(x).(x|%)[b|b[b.(y]y)

The proof follows. Below we say an output chanrel fn(A) is complemented by R if
F R cl(A).

Proof. By rule induction on the typing rules.

Case (Zero). Supposeé- 0 0. Thencl(0) = 0. Since for allQ € [[0], we haveQ |l 0 by
Corollary 3.1 (1)0]Q ¢ 0, as desired.

Case (Res). We do case analysis based on the mode of the hidden channel.

Subcase: F (vx)P > Aisderived from- P> A® x:1. We show, for each complementing
process) € [cl(A)], we havgvx)P|Q}e. By induction hypothesis, for eaéhe [[cl(A® x:
1], we haveP|R{e. Note thatl(A®x:1) = cl(A) by definition. Hence, obviously, we have
P|Q e for eachQ € [[cl(A)]. This in turnimpliesvx)P|Q = (vXx)(P|Q) { by Proposition
3.1 (4-ii), hence done.

Subcase:  (vX)P > A is derived from - P > B such that md(B(x)) =!. Without loss of
generality, we seB = Ag ® X: T — ?Bg andAg ® ?Bg = A. Again, by definition, we know
cl(A) = cl(B). The restis similar to the above case.

Case (Weak). Trivial by inductive hypothesis.

Case (In¥). Assume- x(¥).P > Ais derived from- P> §: T® T A ® 7B with A= (x:
(T)'—= Ag) ®Bo. LetC =¥:T ® Ag® Bo. By induction hypothesis, for eace [cl(C)]), we
haveP | Q |}e, which impliesP e P’ € NFe by Proposition 3.1 (4-i). Then by construction
of NFe, we knowa(y).P' € NFe, hence by Lemma 3.2, we knaa(y).P’ € [A]. Now by
Lemma 3.1 (3), we hava(y).P € [[A]. Then by Lemma 3.1 (1a(Y).P{ ¢, as desired.
Case(In'). Similar to (n*).

Case (Out). Assumetr X(¥)P > A is derived from- P > C™ such thatactive(C) = ¥ and
C/y=A LetAx) =T.

Subcase: md(t) =7. By induction hypothesis, for ea€he [[c|(C)], we haveP| Q| ¢ P'|Q
with P’ € [y: p] wheret = (B)". AssumeR € [[cl(A)]. Then by the shape of the action type
and by definition, we can sa (x(¥).R)|Q such tha(y).R € [x: T]] andQ € [[cl(C)].
We can now calculate:

X@PIx@)-R)Q="XF)P|(x(F)-R)IQ = (v)(PR)|Q"

By definitionR’ € [[y: B, we haveP'|R {le. Also byQ € [[cl(C)], we haveQ' |le. Note that
n(Q') is disjoint fromfn(P’|R’) so that there is no furtheke from (vy)(P'|R)|Q". Hence
we have(vy)(P'|R)|Q e, as required.

Subcase: md(p) = ?. Similar to the subcase above.

Case (Par). Supposeé- P; > A; with i = 1,2 such thatA; < Ay and letA = A1 ® Ay. By
induction hypothesiB; |} P; andP; {e P;. LetP & P1|P;. ThenP = Qq]..|Qn where each

Qi is prime. Ifn = 0 there is nothing to prove. Assume> 0 and letX d:ef{l,z, .,N}. We



define the relationy, on X as follows:

i ] & Ixemn(Q),yem(Q).xAy

For example, take the proceRBs=!a.b|a|!b.c|!c.0 discussed just before the proof of this
lemma, then we have: Y, 3, 2\, 1,3\ 4. As in this example)\,* never collapses two
names. In fact, if \,* j \/* i then there is a cycle of the formn~* x in the sense of
Proposition 2.1 (2). Thus the relation * is always a partial order od. We now define a
series of setX1, Xy, .. as follows, writingmax(Y, <) for the set of maximal elements of a
partially ordered seY.

X E'max(X, ") X1 dZEfmaX(x\Ulsjsixi’\f*)

(asaexample;s =4, X2 = 3,X3 =1, X4 =21inP). As X is finite, Xy, .., Xy partitionX for

somem. Now letS Ci:efnje)(in for1<i<m. ThenP =1<i<mS andS € NF, for eachi.
Choose anfR € ((cI(A))). Note the serieS§, .., S, is constructed so that outputs$y., are
always complemented by inputs 8|S_1]|...|Si|R. Now letk S > G s.t. @1<i<nlGi = A
and letE; d:efcl(Cl) ©CL®..0C_1for 1 <i <m. ThenE; = cl(G) for eachi. Note also
E; = cl(A) andEn, = cl(A) @ A. We now show, by induction on &£ | < m+ 1, that for
someR € (B))

P|R —* n|SiSmS|R|.

This proves the lemma when= m+ 1. For the base case, takRe = R. For the inductive
step, assumP|R—* Mj<i<mS|R such thatR € ((E/)). By Lemma 3.2 and by € NF,
we know that§ € [C]. By E =cl(C) =cl(C1) ©C1®...®C_1, thisimpliesS |R |} R €
{(Ej41)). We can now seR = R, 1, as desired. B

As an immediate corollary, we obtain:
THEOREM 3.2. (strong normalisability in—) = P> A implies CSNg(P).
By — C+~ and Proposition 2.2 (3-iii), we have now established Theorem 3.1.

Remark. Theorem 3.1 (SN w.r.t—) arises as a corollary of Theorem 3.2 (SN w.r.t.
—). This does not mean, however, Theorem 3.1 is of a secondary interest. For example,
the liveness property we establish in Section 7 is a direct consequence of Theorem 3.1
rather than that of Theorem 3.2. Further, when state is incorporated, the notion of extended
reduction itself becomes inapplicable as it is while Theorem 3.1 and the associated liveness
property still make sense. On the other hand, Theorem 3.2 has equational significance, as
we shall explore in the next sections.

4. CHARACTERISATION OF BISIMILARITY

As a significant consequence of strong normalisability of typed processes, this section
shows that weak bisimilarity has a finite axiomatisation in linear processes.

4.1. Typed Transitions and Bisimulations
Typed transitions describe the observations a typed observer can make of a typed pro-
cess. The typed transition relation is a proper subset of the untyped transition relation,



(In) x(y).PA 2L pytea/x (x: (D) €A
(Rep)  x®P* D x@).PPYEA (x:() €A)
©uth)  xyPA U pyieax (x:(®) € A)
Out?)  xyPA U prtea (x:(T)? € A)
o P=p PP p=p (Res) Pl Ly P2 xgn(l)
AL Pyt (xR Ly (vx)pye/”
(P P L, Po2 A o Ballowsl (Com) ph L pe B T, o
PQMCB s py| QB PLIQI™ "B (Vbn(1)) (P2|Qz) 22

Aallows| means (1) ifn(I) =, thenl =t and (2) ifmd(fn(l)) = !, thenl is not output.

FIG. 4. Typed Transition System

while not restrictingr-actions: hence typed transitions restrict observability, not computa-
tion. Let the set ofiction labels|,1’,... be given by the following grammar.

I o= T[X(¥) [X(Y)

fn(I) andbn(l) respectively denote free and bound namels in(l) is the set of names in

|. Using these labels, the typed transition, writh—— QB whereP? is a shorthand for

F P A, is defined as in Figure 4. Prefix rules are standard, except we do not allow a linear
input action and an output action when there is a complementary channel in the process.
For example, if a process hag (respx:(T)') in its action type, then both input and output
actions (resp. output) atshould be excluded since such actions can never be observed in
a typed context (cf. Section 4.2 and Appendix E of [11]). Among the remaining rules, the
first rule says that the transition relation is defined on processes madufkmong the
remaining rules, the first rule says that the transition is defined on processes reodulo
As we shall discuss later we can dispense with this rule by adding two transition rules for
output prefix. The induced transition is well-defined in the following sense.

PROPOSITION 4.1. If F P> A and PA LN QB is derivable from Figure 4 then
FQr B.

Proof. Simple inspection of each rule in Figure 4m

In the light of Proposition 4.1, we hereafter safely assuie> A and- Q > B hold
whenever we writé* —s QB. We also observe:

PROPOSITION 4.2. Let P A. Then P— Q iff PA - QA



Proof. Standard. In detail: By induction on generation rules-ef, it is easy to check
P — Q implies PA — QA. For the other direction, we first show, by rule induction
on transition rules, that, ik has mode| (resp. !),PA X9 Q" implies P = C[x(¥).P]
and Q = C[P4] (resp. P = C[!x(¥).P1] and Q = C[!x(y).P1|P1]) whereC][ ] is a reduc-
tion context. Similarly forPA X9, Q*. Using them we show, again by rule induction
on transition rules, tha®” —— Q* implies P = C[C1[(!)X(¥).P1][C2[X(Y)P2]] whereC, C;
andC; are reduction contexts. From this it is immediRt— Q* impliesP — Q. m

Finally we present the two rules for asynchronous output which allow us to dispense with
(=) from Figure 4, which becomes useful in our proof later.

PR P2 ()N {y} =0 pAL X

_ (6)
() PlAl/S’@xz(T)p _|) (y) P?Z/VG)Xi(T)p X(¥) Pl/’q/V@xz(r) N (VY)Ps {V/Z}Az/z

These rules materialise asynchronous nature of the output in transition (the second rule
needs renaming to avoid clash of bound names). The transition system which adds the
rules in (6) to the rules in Figure 4 replaciegin (=) by =, is calledsyntactic transition

system. The transition system which simply replacesn (=) by =4 from the rules in
Figure 4, is callegrime syntactic transition system. We observe:

PROPOSITION 4.3.

(1)1f PA —Ls QB in the syntactic transition system, so isin the original system.

2)1f PA 15 QB in the original transition system, then PA — QB suchthat Qo =Qin
the syntactic transition system.

(3)Let PA be derived under Convention 3.1. Then PA — QB in the original transition
systemiff PA L QB such that Qo = Q in the prime syntactic transition system.

Proof. For (1), we show that the added rules are derivable from the rules in Figure 4,
which is immediate. For (2) we first show, in the syntactic transitioﬁ@if% Qg andP =

Po thenP? LI QB such tha = Qy. The proofis standard, using rule induction on the syn-
tactic transition system together with inspection of the structure of processes. From this itis
easy to check that the given statement holds, this time by rule induction on the original tran-
sition system. Finally for (3) “if” is by (1) while “only if” is by (2), noting, under Conven-

tion 3.1, the transition induced by syntactic transition system and the one induced by prime

syntactic transition system is identicalm

Note (3) indicates that the prime syntactic transition is precisely the transition which cor-
responds to Convention 3.1.

Based on typed transition, we define a bisimulation. Let us say a relation over typed
processes ig/ped if it only relates processes with identical action type. A typed relation is
atyped congruence when it is a typed equivalence which contaiagnd which is closed

under each typing rule (allowing, as a result, weakening of bases, cf. [11, 53]). Bélpw
denotes the standard abstracted transition.

DEFINITION 4.1. (typed bisimulation) A typed relatioR is aweak bisimulation, or a
bisimulation, if P{*RQ/* implies: wheneveP;* N P,2 then there is a typed transition



sequencé‘?’fl SN Q@Z such thaiPzAZRng, as well as the symmetric case. By replacing

=L with —'), we obtain astrong bisimulation. If PARQ” for some weak (resp. strong)
bisimulationR, we writePA ~ Q* (resp.PA ~ Q%).

We often omitA from PA, writing P ~ Q, if Ais clear from the context. By definition,
~ (resp.~) is the union of all weak bisimulations (resp. strong bisimulations), which
is in fact the largest weak (resp. strong) bisimulation, and is calek (resp.strong)
bisimilarity. The following technical development focusses on weak bisimilarity, which
we hereafter simply cabisimilarity. = is clearly an equivalence relation. Sineeis
easily a bisimulation, by Proposition 4.3, it is enough to use the syntactic transition to
deriveP =~ Q (and the prime one if we are under Convention 3.1).

4.2. Axioms
Let O (7,...) denote a formal (equational) theory over typed processes, which is a set of
axioms and rules with formulae of the foraf* = QA. In PA = Q*, PA andQ” should be
well-typed: we shall however not mention types unless they are necessary, WriingQy
If P=Qis provable ind, we writed+ P = Q. O+ O’ is the result of adding the axioms
and rules from two theories. We extend this to an arbitrary family of theories.

Axioms|: (Pre)CongruenceRules. We consider the standard equivalence rules and clo-
sure under well-typed contexts, identifying tweequivalent terms. This theory is denoted
Oc. We also define its subtheoiyy, by removing(C2) from Ce.

(C1) P=4Q = P=Q (C2) P=Q = Q=P
(C4) P=Q = P|IR=QJR (C5) P=Q = R|P=R|Q

(C6) P=Q = (v)P=(vx)Q (C7 P=Q = x(V).P=x(¥).Q
(C8) P=Q = X(Y)P=X(Y)Q (C9) P=Q = IX(¥).P=Ix(y).Q

Axioms ||: Structural Rules. Let Og denote the set of rules derived from the axioms
(S1-9) in Figure 1. Henc® = Q stands foil; + Os - P = Q.

Axioms|I1: Conversion Rules. Convertibility is induced by the extended reduction re-
lation, taking(E1-3) from Definition 3.1 as ruleslde denotes the theory. Note— Q iff

DEFINITION 4.2. The typed congruence- is defined by the following logical equiv-
alencelP «— Qiff Oc+ Os+ e P =Q.

In other wordss— is the symmetric and transitive closurerefu =.

4.3. Characterisation and its Proof
We now show that— completely characterises bisimilarity.
THEOREM 4.1. (characterisation of =) <+ = =.

We prove Theorem 4.1 by showing two inclusions, {3 C ~ and (2)«— D ~. We
call the first inclusiorsoundness and the second oreempleteness. For soundness, we first
show=: is a typed congruence.



PROPOSITION 4.4. = is a typed congruence.

Proof. Using the characterisation in Proposition 4.3 (1)(2), it is enough to show
derived using the syntactic transition is a typed congruence. Input prefixes, parallel com-
position and restriction are entirely standard, cf. [46]. For output prefix we dBfifg

R1UR2UR3 where:
(1) RiEx;
def o
(2) R2= {(X(YPLX()P2) | PL~ P2}; and
def
(3) Ra = {((vY)PI{Y/Z}, (v))P2{y/2}) | PL~ Pa}.
In (3) we assume the mentioned substitution is well-typed. It is easy to check when-
ever PR; UR2Q its derivatives are related b. For Rz we show this relation coin-
cides with=. Clearly R3 D~ (let ¥ be the empty string). For the reverse inclusion,
underP; ~ P, we have: (vY)Pi{¥/Z} ~ (vY)(Pi|M[z — vi]) = (vY)(P|N[z — yi]) ~
(v¥)P{¥/Z}, where the first and the last equations are by the copy-cat law (see Sec-

tion 6 for the definition of copycat together with the copy-cat law), while the second
equation is by closure of under parallel composition and hiding. ThB& 3Q im-

pliesP =~ Q, that isR3 C~. This showsR is indeed a bisimulation, hence as requires
Next we show:

PROPOSITION 4.5. If DeFP=Q then Px Q.

Proof. See AppendixC.1.
Since<— is the congruent closure &fe, by Propositions 4.4 and 4.5 we conclude:
COROLLARY 4.1. <+ C =.
For the reverse inclusion, we reduce the equality-byto those over normal forms.

DEFINITION 4.3. Let us writeP =’ Q for U¢ + {(S2,83,S5-9)} F P=Q andP > Q
for Op + Os - P = Q (note> is aprecongruence). We sayP is in t>-normal formiif: (1)
P € NFe and (2)P > Q impliesP =" Q.

Note P =" Q means thaP andQ are essentially identical without changing the size of
terms. For>-normal forms we observe:

LEMMA 4.1.

(1) Aprocessin NFeisa>-normal formiff it is without name hiding and it does not
contain O asits proper subterm.

(2)If - P> Athen thereisa >-normal form Q such that P —* Q.

(3) The set of >-normal forms coincide with those processes generated by the rulesin
Proposition 3.3.

(4) IfFP>AandPisar-normal formthen P =’ P |P;|R |P> where:

P = Mieyi(2).R Pr = Mic,Yi(2)R
P = Nig,lyi(Z).R P, = Mic,¥i(Z)R
Herel|,l4,11, 1 partition thefinite set | suchthat (i) for all i, j € I'\1: i # j impliesx; # Xj,

(i) foralli e hul, andall j €1, Ul X # xj and (i) B isin >-normal formfor all i € 1.
Furthermore, P, Py, B and P> are uniqueup to ="



(5) IfP>Aisar>-normal formand P LN Qisatransition, then| # 1.

Proof. See AppendixC.2. B

Let P be ar>-normal form. TherP =’ P||P;|P|P, by Lemma 4.1 (4). The right-hand
side of this equation is calledormal form decomposition of P, with P, P;, P andP»
being, respectively, it$-component, 1-component !-component and ?eomponent.

LEMMA 4.2. Let PUPHP,'|P,', be a normal form decomposition P (i =1,2).

(1) Assume that Pl = ﬂTzlyi (Z)PJl and Pf = HT=1ai(5i)~Pj2- Then Pf R Pf iff
M= n and there is a permutation 0 of {1,...,n} such that yi(Z).P! ~ aa(i)(b;(i))~P§(i)
for all'i. Similarly for Pl’z, P!l’2 and Pf_}’z.

(2) PL~P? iff Pl ~ P?, Pl ~ P2, Bl ~ P? and P} ~ P3.

Proof. For (1), the cases fapl?, PTl’2 and P!l’2 are immediate by considering traces.
ForP52, we proceed by contradiction. Assume w.l.dd.=’ X()P1|X(2)Ps|P’ while P2 =
X(8)Q|Q' such that neitheP’ nor Q' containx as an active name. By Lemma 3.2, all active
names inP, P> andQ are in{y}, {Z}, and{&}, respectively. Typing then ensures that all
these active names are inputs. By Lemma 4.1 (5), no processiiormal form can have

at-transition. Henc®2 andPZ cannot have the same set of traces. (2) follows from (m).

We now prove the key lemma for completeness. For (2). we can indeedrshrawmal
forms are a class of processes whete-, =’ and= all coincide.

LEMMA 4.3. Let P and Q be >-normal forms. Then P~ Q iff P='Q.

Proof. Thesize of P, size(P), is the number of constructors i size(P) is invariant
under='. By induction onsize(P) + size(Q) we show~C='. The base casaize(P) +
size(Q) = 2, is immediate. The inductive step uses Lemma 4.2 (1,2) to reduce the argu-
ment to each prime component for which, after stripping off the common prefix, we can

always use induction. Sine#’ is easily a bisimulation we also hazéc~, hence done.l

We can now conclude the proof of Theorem 4.1 by establishing the completeress,
/s, and combining it with Proposition 4.1. AssuRex Q. By Lemma 4.1 (2) we can find
>-normal formsP andQys of P andQ, respectively, such th&—* Py andQ +—* Q. By
Corollary 4.1, we knowP; ~ Qps. But Lemma 4.3 implies that restricted ta>-normal
forms is contained ir—, henceP — * Pyt «— Qns andQ —* Qns which mean® «— Q, as
required.

5. FULLY ABSTRACT EMBEDDING OF A_, . ¢
5.1. The Functional Calculus
We use the simply type&i-calculus with products and sums (written, » 4 from now on)
as a testbed for the expressiveness of the presented calculus, establishing its fully abstract
embeddability in thercalculus. We have chosén, .  because of its rich type structures
and non-trivial equational theory. For simplicity we omit base types other than unit. We
review the syntax of types and terms below, witAnging over1,2}.

T = unit |T1—>T2|T1><T2|T1+T2
M = x| () |ATM [ (M,N) | T5(M) | inj(M) | case L of {inj(X; :Ti)-Mi}ie{l,Z}



[Var] Tx:TEx:T [Unit] TF():unit

rxXTEFM:T /App] FTEM:T=T TEN:T

Laml = TM ToT FEMN:T
; rEMitTi (i=12) - FrFM:TyixTo
P M) Tax T PO FEmvy T = 1.2)
[In] r-M: Ty Casd FTEM: T+ ML T FM: T

MFinl(M):Ti+To I+ case M of {inj(x : Tj).Mi}: T’

FIG.5. Typing Rules forA_, « +

We writeM =¢ N for a-equality on terms. A term iglosed if no variables occur free. The

typing rules are standard, which we list in Figure 5 (cf. [24,52]). We viiteM : T when

atermM is typable with typel' under a basg&. We writeC[ |1 : T’ for a (typed) context of

type T’ with one hole of typdl'. We often omit type annotations from terms and contexts.
The reduction relation, writteq-, is the least compatible relation which includes:

B) AXM)N ~~» M{N/x}
(proji) T§(M1,Mz2) ~ M
(casg) case inj(L) of {inj(%).Ni} ~ Ni{L/x}

Other possible notions of reduction include commuting conversiong|antes [22]. We

take the minimum meaningful reduction for simplicity, but the main technical results in
this section hold for all reasonable variations (this is essentially because normal forms of
boolean observables are invariant under these rules). We Mrité& whenM ~~* N and

N ~. A normal formis a term which has no further reductions. By easy induction on the
structure of terms, a closed normal form of type+ T’ (resp.T x T/, T +T’) has shape
AXM (resp.(M,N), in;(M)).

Equality inA_, « 1 is not as simple as it may look, due to the existence of sums [22].
To have a semantically meaningful equality, we use observation of “values”, cf. [52]. Let
true d:efinl(()) andfalse d:efinz(()), both of typeB, %'uni t +unit. ThenE - M = N:T
when, for each contex@| |7 : B, such thalC[M] andC|N] are closed, we havgC[M] |}
true & C[N] | true). The same equality is obtained by taking observability at each sum
type, justifying all commuting conversions anetules.

5.2. Extension with Branching and Selection
Before encoding _,  +, we extend the typem-calculus to its full syntax [11] by incorpo-
rating branching and selection. Branching is necessary to represent sNms.in and is
also used for defining a reduction-based typed congruence [33].

P = o |X(&i(50)-R] | D& (51)-P] | imi (9)P
U ou= e & [&T) To i= - |[@it]1] [@iTi])?

We often omit the indexing sé{which should be either countable or finite & ¢ (V).P].
X[&iel (Vi).R] is called branching, while Xin;(y:T)P is calledselection. Similarly for



(Typing Rules)

(Bra') (Sel)
FP >t @ ?2A FP> AT Axx:[@iT]P

FIX&(¥i)-R] > X: [&iTi]'=A  FXinj(Y)P > A/YOX: [@iT]P

(Labelled Transition Rules)

aigR)h ) pITeA (&t € A)
g AR ) iy PRI (gt € A
xin(y)PA Y pyTionx (x: @] € A)
xini(y)PA Y priioA (<[t € A)

FIG. 6. Typing and Transition Rules for Branching and Selection

[&i Ti]P and[@; Ti]P. = is defined as in Figure 1. The reduction for branching involves
selection of one branch, discarding the remaining ones, as well as name passing.

X[&i(%).R]%inj(¥;)-Q — (v¥1)(P; | Q)
IX[&i(%)-R][Xinj(V1)Q —!X[&i(¥h)-R]I(VY;) (F|Q)

As an example, aatural number agent, [n]y d:ef!u(c)Cinn, acts as a server which neces-
sarily returns a fixed answar;, see [11, 35, 69] for further examples of reductions.

The typing rules for branching/selection are given in Figure-6.is extended as in
Definition 3.1. Below in(E4) we assume holes exhaust all occurrences of (linegrjve
extend(E1) in a similar way, reducing-holes simultaneously.

(E4) C[Xinj, (Yj,)P]..[Xinj, (¥j,)PIIX[&i(¥)-Qi] =1 C[(vj;)(PIQj,)]--[(VYin) (PIQjn)]
(E5) ClXinj (¥j)PII'x[&i(%1)-Qi] =+ C[(v¥))(PIQ))]I'X[&i(¥)-Qi]
(E6) (V)IX[(¥)i-Qi] =g O

The typed transition is defined by extending the set of labels xiith(y) andxin; (y) and
by adding the rules in Figure 6. The weak bisimilaritys then defined by the same clause
as in Definition 4.1 in Section 4 using the extended transition relation.

The technical development for the full calculus is identical with that for the unary cal-
culus in the preceding sections, except for the following minor changes:

¢ In Proposition 2.1: In (1), “precisely once” forfachannel becomes, under a branch-
ing input, “precisely once in each branch”. In (2), we extend the relatidior branching
inputs and outputs.

e In Proposition 3.3 we add the following clauses to the generation rulés-ef if
P € NFe thenx[(i).R] and X[(¥)i.P] are inNFe; if P € NFe thenxXin;(Y)P € NFe.



¢ In the definition of semantic types (Definition 3.2), we add:

(:[&T)) T {X&i(¥:T).R] | P e[y}
(&) £ {IX&i(¥: )R] | P e[y}

With these changes, all arguments and results for the unary calculus carry over to the full
syntax. We summarise the main syntactic properties below.

PROPOSITION 5.1.

(1) (reduction)If - P> A, then (i) P— Qimplies Q> Aand (i) P — Q12 implies
either Q1 = Q. or Q1.2 — Rfor some R, and (jii) CSN(P).

(2) (extended reduction)if - P> A, then (i) P— Q implies- Q> Aand (i) P— Q1
implies Q1> —* Rfor some R, and (i) CSNe(P).

(3) (finite axiomatisation)et «—= (— U =)*. Then+— = =.

Branching allows us to define contextual equality in the strongly normalising processes,
using observables at non-trivial branching types. Formallyctiméextual congruence 22 is
the maximum typed congruence over (extended) processes satisfying the following condi-
tion. LetB = [®i-12 ]" below.

If Py, andP*B = Q*E, thenQ |,  (i=1,2)

whereP |l means® —* Xin; ()P’ andP*® = Q*® relateP andQ typed undex:B. As
in bisimilarity, we sometimes simply write = Q for PA 2= Q*. We observe:

PROPOSITION 5.2.

(1) (maximal consistency} is mazimally consistent in the sense that the only
typed congruence which strictly includes =2 is the universal relation.

(2) (contextlemma) Let Py, > A ThenPy =2 P, if and only if, for each- R> A® x: B,
(VIn(A) (PLIR) U iff (vIn(A)(P2|R) U,

(3) (innocuous actionsff - P> A and md(A) = ? then PA =07,

Proof. For (1), letR be the result of adding an equation% By the definition of=

there ardP*®RQ*® such thaP ||} andQ |}2. Take any- Ry 2> 1 ?A (with x & fn(A)). Then

Sd:dx[.Rl&.Rz] is typable. By the congruence B we haveSP1RSP,. Since—¢e=

(cf. Proposition 5.1) this implieR;RR,. From suchR; > we can build any prime/non-
prime terms, by which we conclude the universalityRof (2) is standard: for reference
Appendix D.1 lists the proof. For (3), suppd%éjgfi(y) P’ has type 2 and take the context
C[] from Atou:B. By (2) above we can s€[ ] has form(vW)(SR|[ ]) whereR is the
composition of replicated processes compensaiinginceu cannot occur irR it occurs
in S, whose behaviour at does not depend dR in C[P], i.e. C[P] .\, iff C[0] {}i,, hence

P = 0. (An alternative concise proof of (3) using a refined bisimulation is given in [6W.)

=~ and~ are related in the following way.

PROPOSITION 5.3. =~ C =.



Proof. By Proposition 4.4% is a typed congruence and it respects convergerig gt
definition. Sincex is the maximum such this showsC 2. For strictness, take x> x: ()?.

By Proposition 5.2 (3) this processas-equal to0 but clearlyx% 0. B

Finally we list processes of specific form used in the encoding later, caij@dat. A
copy-cat dynamically links two locations, which has an origifarwarder in actors as
well as in game semantics.

def

X(3)-X (Y)Y, = yi]™

x— x|®F &

x=> X1 1) XML - v

[} — X &0 & (91) X ani (F) i [y, — Yif ]
[x — X]&TT LT 1x(& (91) X dn (V) My — vif]™]

The following property of copy-cats is used later.
PROPOSITION 5.4.

MDFXx=Y">x:T— (Y:T®?A) for each input type T and ?A with X,y & fn(A).
2)(vy)(Plly = X" —"* P{x/y} assuming typability.

Proof. See AppendixD.2. m

5.3. Sequentiality

One of the basic notions we shall use for the proof of the full abstracti@egientiality.
“Sequential” in this context means that processes have at most one active thread: The
combination with the sequential type discipline in [10] can realise this behaviour in linear
processes. While the full abstraction result is established in the lmealculus without
the sequentiality constraint, sequentiality plays a crucial role in several arguments. Below
we restrict the lineartcalculus to its sequential subsystem following [11] and study its
basic properties used in the subsequent proofs.

The first constraint on the linear typing is on channel types.

DeriNiTION 5.1. The set ofsequential channel types is generated by:

° (tl..rn)i is sequential if, for each £ i < n, T; is sequential anchd(ti) = ?; and
e (11..Ty)' is sequential if, for each £ i < n, 1; is sequential and, for each<li < n—1,
md(T;) = ? whilemd(tp) = 1.

Dually for output types and similarly for branching/selection types (imposing the same
constraint for each summand).

The sequent for sequential typing has the fergP> Awhereg € {1, 0} is anlO-mode,
which ensure® contains at most one active thregrbbeys the partial algebrae1 =1 and
1 ®o=001 =0 Wheng, ® @ is defined (that is, if they are not simultaneously output),
then we writeg; < (.

The typing rules are given in Figure 7 (the sequential versigBal and(Sel) follow
(In) and(Out)). The use of I0-modes in itPar) ensures single threading sinee o is
undefined. An output (resp. input) can only prefix a body in input (resp. output) mode,
resulting in output (resp. input) mod@. starts fromi. Other rules(Res,Weak), do not
change 10-modes. For this system we observe:



(Par) (Res) (Weak)

(Zero) Fo P>A (i=1,2) o P AXT FoP>A™

- AAxA <@ md(t) € {},!} md(T) € {1,?}

F O>_ Fo,omPLP2> ALOA2 Fo (VX:T)P>A/X FoP>A®X:T
(In%) (In") (Out)

FoP>¥:T® 1+ AX® 7B™ FoPpy:T® 2A™ H PoAYT Axx:(T)P

H X(Y:T).Po (@)= A) @B FIx{J:T).Pox:(T) A  FoX(Y)PoA/JOX:(T)P

FIG.7. Linear Sequential Typing

PROPOSITION 5.5.

()IfFgP>Aand P — Qthent-o Q>A. Smilarlyif g P>Aand P— Qthent¢ Qn A,
2)If l_(p P>Aand P — Q12 then Q1 = Q».
(3)If o P> Athen CSN(P) and CSN¢(P).

Proof. (1) follows the proof of Proposition 2.2 (presented in Appendix A.2 using A.4),
incorporating 10-modes in addition. (2) is because there is at most one active output

in a sequential process. (3) is immediate singd> Aimpliest P> A by definition. m

Remark.  Proposition 5.5 (2) indicates the sequential nature of dynamics in sequential
linear processes: in spite of this; gives a way of computing normal forms of sequential
processes by parallel reduction.

A significant property is that linear processes typed under sequential channel types are
already sequential from a semantic viewpoint.

DEFINITION 5.2. An action typeA is sequential if all channel types used iA are se-
guential and, moreover, it does not contain two linear output channels.

Having at most one linear output in an action type (cf. [11, Appendix F]) makes it
possible to have inductive definition of sequentialisation, given next.

PRrROPOSITION 5.6. (Sequentialisation)Given - P> A such that A is sequential, P €
NFe and P does not contain hiding, define P! by the following induction, implicitly
assuming typability under sequential A in each case.

o 0t €0 and (P|Q)* L'PH| Q.

e (X(¥).P) d:'an(Y).Pﬁ and ('X().P)* d:eflx(y).Pﬁ, similarly for branching.

o(X(Y)P)* d:ef)_((Y) P! if +€ md(A), (X(Y)P)* £ if 1¢ md(A), similarly for selection.
Then we have ¢ Pi> A for some @ and, moreover, P = P,

Proof. We first show, by rule inductiort o P!> A for somepwhenevet P> Afor P e
NFe and sequentiad. W.l.0.g. we work under Convention 3.1.Rf= 0thent 0> ?Ahence



F O>A, as required. FOP = Py|P,, letk4 P> A (i = 1,2) such thaA = A; ©® Ay, Suppose

@1 = @ = o. SinceP € NFg, Pf and Pg respectively contains prime outp%% and% as
factors of parallel composition. B& being sequential, one Gﬂ and§Z has only ?-mode
channels (note a prime output does not contain input subjects), which is impossible by con-
struction. Thus one ap; andgy is 1, from which sequential typability is immediate. The
remaining cases are direct from the induction hypothesisPRarP!, the only non-trivial

case igX(y)P)* dZEfOWhenTgZ md(A), for which we use Proposition 5.2 (3) . The rest is di-

rect from induction hypothesis.m

Using sequentialisation we establish a refined context lemma. We only present the result
for processes of the form needed for our later result.

LeEMMA 5.1. (sequential contextlemmaet - P12 > X:T — ?A (with md(T) =!) such
that T and A are sequential. Then P1 22 Py iff for each FoT>X:TRU:B and for each
F ReA we have (VW) (PLRS) I, & (VW) (PRIS) U, where fn(A) = {W}.

Proof. By Proposition 5.2 (2) and by absorbing/garbage collecting processes using
extended reduction, we knolRy = P, iff for each T > X: T®u:B and for each- R>
A. By ~C= we knowP — P’ implies P = P/, so that we can takR and T to be in

NFe. Using Proposition 5.6 we can further rediRandT to be sequential processesli

5.4. Encoding and Soundness
The encoding ok _, « + is givenin Figure 8. The encoding oha, . -typeT, writtenT®,
mapsT to a replicated type. The encoding ofa, » +-termE M : T, written[E+M: T]
or [M : T] for brevity, adapts Milner’s call-by-name encoding [49] to our type structure by
adding an indirection at eadtrabstraction. The encoding of terms follows the encoding
of types, and uses type information on variables k-@rm. The encoding of a bagg
written E°, maps eacl: T in E to x: T°, dualising the mode. This can be understood as
follows: if we have a\_, » ;-termx:T FM:T’. The corresponding process interacts with
a datum of typ€T ° in the environment, and produces a datum of t§p& Thus atx, the
process itself should have the type which complem&ntghat isTe.

PROPOSITION 5.7. For each T, T° is a sequential unary channel type of mode !.

Proof. By rule induction of the mag )°. The base case i§° = (())', which is
immediate. For inductior(;Ti=T2)° = (T (T5)")" is sequential iffy’, are sequential and
have mode !, which is the induction hypothesis. Similarly(fby x T>)° and(T1 + T2)°. B

PROPOSITION 5.8. (syntacticsoundnessjfEFM:T then bt [[M:T]lu>u:T® — E°.

Proof. See AppendixD.3. ®

Note also[M : T])y has always the shapa(®).P. Further[M : T]y is sequentially ty-
pable, though we do not use this property in our subsequent proof. This concludes the
verification of static properties of the encoding.

For dynamics, we obtain:

PROPOSITION 5.9. IfEFM:T and M~ M’ then [M]ly =+ [M']u.

Remark. Note there is an exact operational correspondence betweand— : ~ is
simulated by— directly, not up to some semantic equality.



(Type)  unit® & (1) (=T & T
(MixT2)° L (TN M+ T2 E (TPeTs)h)
(Bass) o Lo (E-x:T)°e L Ee.x:To

(Terms)

X: T]]u = [u—>x]T

():unity Iu(x)X

AT M:T = Tle ©ux).2(m)M: T]m

MN: Tl ENu@). (vmn)([M: T/ = Tlm|Arg(mMN,2T=T) (%)
(M1, M2) : T x Ty "1 u().c(mymp) (1M1 : Tl | [M2: T']im,)

M (M) Tl € 1u@).(vm)([M : T x T | Projy(m2)T)  (+)
in1(M) : T+ T'Ju ©hu(e) cinl(M)[M : T]m

case L of {inj(X : Ti).Mi}icq1,2) : Tlu U@ W(IL: T+ Tl [ Sum (L2 {0)MDT) ()
Arg(m,N,2) = Em(ne) ([N : Tyl | c(w). Msg(w2) )

Proji(m2)T %" me)e(vivy).Msg(vi2)T°

Sum(l,2 {()M})T % T(C)cl&ie 1.2 (x)- (V) (IM; : Tl | Msg(m2) ™)
Msg(9) @ E'x(5) M, = wl®

(x)Z2=2120 if T=Ty=Ty, elsez=2z

[
I
I
I
[
[
[
I

We omitinr(M) andmp(M).
FIG.8. Encoding ofA_, » +

Proof. See AppendixD.4. m

COROLLARY 5.1. A, x4 is strongly normalising.

Proof. Immediate from Theorem 3.2 and Proposition 5.9

Proposition 5.9 and its corollary offer a faithful computational embeddig of,  in the
T-calculus: we now show that this also extends to semantics, starting from soundness. To
this end we first analyse the inhabitation property of the limeaalculus af; .

PROPOSITION 5.10. If F P> u:B; and P € NFe then either P = [[true : B\ ly or
P = [false : By JJu-

Proof. We use Proposition 3.3, notirif ©f ([@ic12(0N'D)'. Let P be a>-normal
form such that P> u:BS . By Proposition 3.3P =!u(2).P; such that- P} > z: [i=12(()")']".
Again by Proposition 3.8] = zin;(w)P} with Pé >w:(()T)'. This way we reactP =

lu(2).zinji(w)!w(v).v. ®



LemMmA 5.2. (computational adequacy)et M : By be closed. Then M | true iff
MJu Ve [ltruelu.

Proof. Proposition 5.9 gives the “only if” direction, notirfgrue] y € NFe. For the “if”
direction, we first observe the following property.

Claim. If F M : B, andM | N then eitheN = true or N =4 false.

This is because, as mentioned in Section 5.1, cldsgd ;-normal forms of typaini t,
T1=Tp, T1 x T andT; + T2 have the shape, respectively,Ax.M, (M1, M) andiniM [be-
cause: there is nothing to prove when the term is eifheéxx.M, (M, N) or in;(M); if the
closed normal form i8N, by inductionM should be abstraction hence induces a redex, a
contradiction; ifr(M) is a closed normal forivl is again so, thus by induction we kndw

is a pairing which is impossible; similarly farase L of {ini(X;).M;} with respect td_].
HenceN as above should have forta;(N') whereN’ is of typeuni t and is again a closed
normal form, that i\’ cEf(), as required. Suppog®]] | [true]y andM § N. If N = true

we are done. If nof\ = false. By Proposition 5.9, we kno{M] , {} [false]lu, which contra-

dicts the CR of—, hence done. m

By the standard argument we obtain:

COROLLARY 5.2. (soundnessfEFM :T]y=[EFN:T]y, impliesEFM=) N:T.

5.5. Completeness
We now tackle a harder direction, the equational completeness of the encoding. While
preceding studies of types for threcalculus have established the soundness of some
calculus embeddings, they are rarely complete due to the fine-grained nature of name-
passing [66]. The technical development in this subsection shows, following [10], that
the duality-based type discipline gives a precise representation of functional strong nor-
malising computation as hame-passing processes, leading to full abstraction. The proof
usesfinite canonical forms (FCFs) [4, 37], which are semantically innocuous extension
of A « +-terms that can cleanly represent linear sequential processes under the encoded
A x +-typing. Via FCFs, we know all linear sequential processes of, | -types can be
decoded back intd_, » -terms. By sequential context lemma, this is enough to represent
all pertinent process contexts &s, x ;-terms, reaching the completeness. In comparison
with [10], we entirely argue via syntactic structure without going through innocent func-
tions (even though the definability argument is closely related to the one based on innocent
functions in [10]). The grammar of finite canonical forms [4, 37] (FCFs) follow.

F = () | x| MF | (Fi,F) | ini(F) | case xof {inj(x).FK}
| let()=zinF | letx=2ZF inF’' | let (X,y)=zinF

FCFs use three additional construdtst () =N in M (let-unit),1et x=NiNz: Sin M
(let-app) andLet (x,y) = N in M (let-prod). We omit their typing rules [4, 37]. Hereafter
we only consider well-typed FCFs.

In the context of the functional calculus, we may consider FCFs in terms of their transla-
tionintoA_, . 4-terms, which folds “let” constructs using substitutions. The map, denoted



fold( - ), is given as follows.

fold(()) =
fold(x) =
fold(Ax.F
fold((Fy,

fold(in;(F
fold(case X of {in;j(x).F
fold(let ()=zinF
fold(let x=12F in F
fold(let (X,y)=zinF

)
F) =
)
)
) =
)=
) =

def ()

def
X

© Ax.fold(F)

L (fold(Fy), fold(Fz))
in; (fold(F))
case X of {inj(X;).fold(F)}
fold(F)
L7 fold(F){zfold(F) /x}
= fold(F){m(2), m(2)/x.y}

def

def

By structural induction, we can cheé¥d(F) is a~--normal form for eact. By com-
bining this folding with[] Ju, we can now encode FCFs into treealculus.
Another way to map FCFs into thecalculus is to directly encode FCFs to ENFs. Below

we set, w.l.o.g.: fof et s, [[F]]ud:eﬁu( w).P;

u

((XNu

(AXF)u

(((F1,R2)Du

((case zof {inj(%).F}))u

{(Let () =z:unit in F))y
{(let x=2F" in F))y

)
)
F)
)
{(ini(F))
)
)
)
(et (x,y)=zin F:T)y,

)
)
)
)
Ju
)
)
)
)

and, forcase, [[Fi]u d:Qf!u(v*v).Pl.

lu(c).c
[u— X

1u(x)-2(F) (F) ¢

{(F)u and[fold(F)]lu semantically coincide:

LEMMA 5.3. For each EFF:T, we

Proof. See AppendixD.5. m

have [[fold(F) : T]u = (F : THu.

A fundamental property of FCFs is that we can decode back proceskes of. -types

onto corresponding FCFs. The decoding is done by first choosing sequential processes
(which does not lose generality by Proposition 5.6), then transforming them using certain

permutation.

PropPoOSITION 5.11.

(1) For each T and E, u:T° — E® is sequential in the sense of Definition 5.2.
(2) For each EFF : T, we have | (F: ThHy>u:T® — E°.

Proof. (1) is from Proposition 5.8 (1). (2) is easy inductions

LEMMA 5.4. Assume below processes

arein NFe, are sequentially typed with sequen-

tial action types, and obey Convention 3.1 and the standard bound name convention.



(1) (permutation)x(rc) (R c[&i (W) z(e)!e(Y).R]) = z(e)!e(y).X(Fc)( R|c[&i(W).R])
if X has ?-mode and z has T-mode.

(2) (n-expansion, 1)U(Xz).P =!u(Xz).z(m)P’ for some mand P’ if zistyped as ()T.

(3) (n-expansion, 2Y\e say a sequential P is n-expandedif, for each subterm of P of the
form!u(Xz).P" with z typed with a unary linear type, P’ hasthe shape z(¥)Q. Then for each
sequential P, thereis an n-expanded P" such that P = P",

Proof. (2) and (3) use (1). See Appendix D.6 for detailm

We can now define the reverse map. E& > u: T ° — E° such thaP € NF¢ without hiding

or redundan®. By Propositions 5.11 (1) and 5.6, we safely assiesequentially typed.
Further by Lemma 5.4 (3) ld&? ben-expanded® Noting these conditions are satisfied by
each subterm d?, the map(P)) is defined by the following induction. In the last four lines
we assume ¢ {y}.

(u(c)0) = ()

(tu(xc)T()P) £ Ax(P)
(u(0)-B(f1f2) (! fL (Y1) Pul! F2(72)-P)) = ((Hf2(¥2).PL), (! F2(52).P2))
(tu(c)cini(f)P) = ini((P))

)

(u)-2fO)(Ple(x).P")) £’ 1et x=2(P) in (u().P)
(u()-20)c(ax)-P) L 1et (x1,%) =y in (u().P)
(u()-2(c)c[&i(%)-P]) £ casezof {ini(x).('u(y).R)}

By inspecting each rule, we immediately observe:

) €

)

)

)
(u@.z(c)cP) £ 1et () =zin (u().P)

)

)

PROPOSITION 5.12. Let k) PoE®-u:T°. P€ NFe and P is N-expanded. Then (1)
EF(P):T and (2) P={(P) : T)u-

A key property for the completeness follows.

CoROLLARY 5.3. (definability) Let-Pw>E°-u:T°. Then P [M:T]y for some
EFM:T.

Proof. By Propositions 5.11 (1) and 5.6, take the sequential versid®, 6f!. By
Lemma 5.4 (3), further take itg-expansionP. LetM £'fold((P1)). Then we have:

P = P = (PM): T)u = [fold((PM)): Ty & [M: T]u,

as required (the first equation is by Propositions 5.6 and 5.11 (1); theniexty Lemma
5.4 (3); and the third equation is by Lemma 5.3

We can now establish the full abstraction. We use the following isomorphism between
B andB; (actually we only need one direction of the isomorphism).

2In fact, we only need-expansion for function types, i.e. when a subterm has the fofxa).P. Alternatively,
we can dispense with-expansion by adding an additional syntax to FCFs.



PROPOSITION 5.13. (isomorphism) Write C[ - |8 for a context whose hole has
type A and whose result has type B. Define:

Gl i & 1y(0). (v (&i—12.Cini (1) F(g)-g] | [ - )
Gl 3% € wy)FOd&ioxin] [ -]

Then we have:

(1)Cs b are well-typed.
(2) P I iff Cr[PIX Ve [true]ly, dually PYBR {e [true]ly iff Cy[P] 1.
(3)Co[CH[PJJ T P for each - P> x: B and, dually, C¢[Cy[QIi]% = Q.

Proof. (1) is immediate. For (2) lét P > x:B. Without loss generality Ie® € NF¢, so
thatP = Xin;.

GPY £ 1y(c).(vX)(X[&i—1.2-Cini (f)! f(g).g] | Xinj)
1 ly(c).cini(f)!f(g).0

Similarly Cy[!y(c).Tinji(f)! f(g).g]y —" Xinj, hence done. (3) follows (2).m
TueoreM 5.1. (full abstraction)E F M1 22 M2 : T iff [M1: T]lu = [Mz2: T]u.

Proof. LetEF Mi1o:T with E=y;:Ty,..,yn: Ta. By Corollary 5.2, we only have
to show the “then” direction. We prove the contrapositfid, : T]u % [Mz2: T]u implies
M3 2\ M2. Below we often omit type annotation for brevity.

[M1:T]u# [M2:T]u
& dH RpE°, FoSru:To®v:B.
(VW) ([M1]ulRIS) U5, (v§) ([M2]ulRIS) 47
(Lem. 5.1)
& I ReE°, FoSru:To®V:B.

Ce(v39) (Malul RIS Ve [truellw, Cr{(vP)([MJulRISY e [false]n.
(Prop. 5.13(2))

& I ReE°, FoSru:To®V:B.

(V3 (IM2]ulRICHSY) e [truew, (vx9)([M2]lu[RICHSY) de [false]w
(Lem. D.1)

= AFEN:T, u:TEHL:B.

(V) ([M1]lu[ TN Ty, [[LJw) Velltruellw, (v3§) ([M2]lu[TIN Dy, [[Lw) Ue[false]w-
(Cor.5.3)

< A EN:T, u:THL:B.

(AUL)((Ay1..yn.-M1)N) | true, (Au.L)((Ay1..yn.M2)N) |} false.
(Lem. 5.2)
def

=4 Ml %}\ M27

as required. m

Remark. By Corollary 5.3, the embedding is in addition fully complete (in the sense of
[3]) up to=.



6. LINEAR m=CALCULUS WITH FREE NAME PASSING
In the previous sections, we have investigated the properties of the tirezdculus whose
outputs are restricted to those which pass only bound names. Using bound names has
significance in making the representation of computational behaviour as tight as possible:
given some behaviour which we wish to model, the way of representing it in the typed
calculus becomes strongly constrained and thus, for example, we own a fairly tractable
notion of inhabitants in each type (Theorem 5.1). However, a natural question remains:
can we impose behavioural constraints of the similar kind on terms with free name passing,
i.e. using the standard syntax for the asynchromsaoalculus? And if we can, does it add
any expressive power? This is not only intellectual curiosity. Apart from the simplicity
of the presentation (by moving to free name passing we can get rid of a couple of added
structural rules), free name passing makes the computation more tractable: it also has
technical advantages in the second-order setting [12].

This section studies these questions, extending the syntax to free outputs while using
precisely the same type structures. The typing rules do not change except for free outputs.
The embedding of terms of the system with bound outputs into the system with free out-
puts is essentially subset inclusion. After presenting the translation, we show these two
maps not only preserve types but also the semantics: they do not change the behaviour of
processes up to the canonical equalities. This result also shows that the universe of linear
terms with free outputs is semantically equivalent to its strict subset which use only bound
outputs, thus answering the question posed above. The extended reduction is used as a
tractable tool to prove their correspondence.

6.1. Linear Typing with Free Name Passing
The syntax of processes with free name passing is the standard asynchronous pelyadic
calculus with branchings and selections. We take off the bound output and selection from
the syntax in Section 5 and replace them with the following two.

P = .| XYy | Xini(y)

The bound outpuk(¥)P can be recovered &8 V) (X{(¥)|P), so that the second syntax in fact
subsumes the first one. For the reduction relatien, we replace the axioms with:

X(¥)-P[x(V) — P{V/y}
X&i(%)-R] [ Xini(V) — P{V/¥i}

Similarly for replication. The typing rules for these processes are exactly the same except
that the sequent is now writtéry P> A and that we use the following rules for outputs.

(Out) (Sel)

H (Yo x: (T)P §: T ¢ Xinj (V) b x: [@T] PO ¥ : Tj

In (Out), we assume; = T; if y; =y;. Similarly for (Sel). Note the types for object names
in the above two rules are dualised. The resulting system is deRNtednd the original
system is denoteBINP. For clarity we hereafter write, P> A for the typability inBNP.



The rules for outputs given above, are best understood in terms of the following repre-
sentation of free outputs in the realm of bound outputs.

X(5)* S %@ -y

(The same expression already appearelliggx®) in Figure 8). The annotation of free
objects do not lose generality since, when processes are typed, we can always restore the
original type information. The above representation says that a free name outputis a bound
name output in which all exported names are “equated” with the mentioned free names. In
this representationy; is used ag; and, as a resuly; is used ag;, illustrating the typing
rules given above.

Let - P> A and defineP°® by extending the above map compositionally, iG. def )
(PIQ)” E'PIQ°, ((v)P)” E (vx)(P), (X(3)-P)° E'x().(P), (1X(9)-P)° E1x(5).(P°)
andx(yt) ® £'x(w)M; [wi — yi]%, similarly for branching. We shall be using this encoding
for relating the two systems. We can easily check:

PROPOSITION 6.1. Fi P>A iff Fp PP >A.

While we can directly verify various syntactic propertiesFofP, a simple way to do so
is by reducing them to those &NP. We first define the extended reduction for the free
output calculus as follows.

(1) CIROWI-REU] | X5)-Q 1 CIQ{UL/R}].[Q{Tn/R}]
(E2) CIRW]IXH).Q + CIQ{U/RH[1X().-Q
(E30) (VIXF).Q g O

where(E1¢,E2¢, E3¢) correspond tdE1, E2, E3) respectively (IN(E1¢) we incorporate oc-
currences of linear output names in branches, cf. Section BEL)E2,E3) are changed
accordingly. We now show, via the mappifg)°, the dynamics oBNP can completely
mimic that of FNP.

PROPOSITION 6.2. (simulation) Let-; P>A below.

(1) If P= Q thenP°® = Q°. Also P°{V/y} %' (P{v/y})°.

(2)1f P — Q thenP® —s—* Q°.
(3)1f P> QthenP° —+ Q°.

Proof. Two statements in (1) are mechanical. For (2) we argue by rule induction. For
the base case, we use Proposition 5.4 (2) as well as the latter half of (1) above to obtain:

o def ol
X()-P® = x(9)-PIX@)N[yi = vi]
— (V)(P°[[vi = wi])
+ po def o

= P{/Y} = (P{V/9))
hence as required. Similarly for the replicated reduction. The inductive cases are imme-
diate from the corresponding induction hypotheses, using the first part of (1) for the closure
under=. (3) is similar. &

Below CSN(P) andCSNg(P) in FNP are understood as those ideasivP.



COROLLARY 6.1.

(1) (reduction) If ¢ P> A, then (i) P — Q implies ¢ Q> A; (i) P — Q1,2 implies
either Q1 = Q2 or Q12 — Rfor some R; and (i) CSN(P).

(2) (extended reduction) If ¢ P> A, then (i) P +— Q implies -+ Qp A; (i) P— Q12
implies Q12 —* Rfor some R; and (iii) CSNe(P).

Proof. Direct from the corresponding resultsBNP. As an example, ldt ¢ P>A and
P — Q. Thent, P°> A by Proposition 6.1. Further I& — Q. By Proposition 6.2 we
haveP°® —* Q°, hence by subject reduction BNP we have-, Q° > A. Again by Proposi-

tion 6.1 this meank, Q> A, as required. |

Remark. (on bisimilarities) Define~ in FNP using the standard free name passing
transition, combined with the type-directed constraints given in Figure 4. We can eas-
ily show = coincides with the congruent closuretef in FNP, using precisely the same
reasoning. This result cannot be obtained via the embedding, besaisseot abstract
enough in comparison wit the one induced by the encoding: the equivalence obtained via
the embedding (based eaiin BNP) is strictly more general. We can regain the latter by
using a refined typed transition discussed in [12] (also see [13]); though we use neither of
these bisimilarities in the following discussions.

6.2. Mutual Fully Abstract Embeddings
For mutual embeddings betweBNP andFNP, we use the contextual congruences of the
previous section (defined by the same clausaftP andFNP). We write this maximum
congruence foBNP andFNP, =, and=%, respectively. If we wish to designate them with-
out specifying which, we write2. Since the symmetric closure e is a typed congru-
ence which respects convergencBaive know— C =. We use the following observations
[33,56].

LEMMA 6.1. For each Fp P> A with md(A(X)) € {1,?} and a fresh name y, we
have (vX)(P|[x = Y]) =p P{y/x}. Similarly, for each ¢ P>A with md(A(X)) € {1,?},
we have (VX)(P|[x = Y]) =% P{y/x}.

Proof. By Proposition 5.4 (2Jvx)(P|[x — V]) —* P{y/x} in BNP. By Proposition 6.2
the same is true fdENP. Since— stays withinz, we are done. B

Let Fy P>A. Then we writeP* for the result of translatin® into a process with free
» def

name passing by the following map for bound outgrty)P) * = (vy)(X(Y)|P*), as well as
0 =0, (PIQ)* EPIQ", (vXP)* £ (vx)(P), (x(¥).P)* Ex().(P*) and (1x(9).P)* =
IX(¥).(P*), similarly for branching. We can verify:

PROPOSITION 6.3. FpPrA iff H PP >A.

We can now state the main result of this section.

THEOREM 6.1. (both-way retractsfor each - P> A, we have P*° =2, P. Similarly,
for each ¢ P> A, we have P°* = P,



Proof. For the first half, we use induction. The only non-trivial case is bound output.
Let-X(Y)P > A. Then

II&
—~

" (DR i[ws — yi)[P*)
(W) (v) (M [wi — %i][P*°)
(§)(P*°) = X()P

The last two equations are by Lemma 6.1 and by induction hypothesis, respectively. The
second half is also by induction, which boils down to showiitij °* =% X(¥). In fact, using
Lemma 6.1, we have:

(X(PP)**

R
X X

o

as required. m

Theorem 6.1 shows that all additional termg$=iP which do not exist irBNP are in fact
equivalent to their image iBNP, so that~-NP does not add anything 8NP semantically.
Further it says that this map is semantically the identity magm®h. We now conclude
the section with a full abstraction result.

CororLLARY 6.2. (full abstraction)l, P =2, Q> A iff F¢ P* 22 Q* > A, Similarly
FP = Qe A iff Fp P° =, Q7> A.

For the proof we use the characterisation in Proposition 5.2 (2). SuppézeQ and
C[P*] L. By Theorem 6.1R° = R, so that(C[P*])° |}\, that isC°[P*°] |}.. Again by
Theorem 6.1 we hav€°[P] |J.. By assumption we have°[Q] |}, that is (C°[Q])* /i,
from which we know, again by Theorem 6[Q*] U‘X, as required. The converse is trivial
since( )* is syntactic identity. The proof of the second half is precisely symmetric.

7. DISCUSSION AND FURTHER WORK

Summary. The present study is part of our quest to articulate significant classes of com-
putational behaviour using typedcalculi. Previous work [11] introducedaffine, sequen-

tial types for the-calculus and established full abstraction for an encoding of PCF, which
is the representative sequential functional calculus allowing divergent computation. Us-
ing causality between names, the present text refines affine, sequential typksesato
types to ensure strong normalisability and full abstractior\far, ... Figure 9 shows the
relationship between these results.

e The addition of branching types is indicated by -&, adds causality to action types,
andSeq stands for the inclusion of the sequentiality constraints used in [11].

¢ Determinacy, SN and sequentiality are properties guaranteed by each typing system.

e FC denotedull completeness of the embedding of the correspondikgalculus into
thertcalculus in the sense of [3] (up 8 andn-expansion, cf. Proposition 5.3), whifa
stands foffull abstraction up to semantic equality.

For example, the linear typing system in § 2 correspond$to—, its branching extension
in 85 toAff + & + — and the sequential system in [11]A& + & + Seq. Note that the de-
velopmentin § 5 shows that our encoding is already ‘almost’ fully complete intensionally
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Aff +& +Seq  Aff+& +Seq+—
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FIG.9. A Family of Affine/Linear Systems

and indeed becomes fully complete by quotienting with the observational congruence. It
is also notable that we could have used the call-by-value encoding in [49] to obtain exactly
the same result, indicating the flexibility of the proposed calculus to encode functional SN
behaviour. Extensions based on this family are summarised in the introduction, but also in
[35, Figure 1] and [67, Figure 1]. See also the discussion below.

Liveness in Interaction. A consequence of strong normalisability is liveness in inter-
action: if a typed agent calls another replicated typed agent and waits for its answer at a
linear channek, then an answer is guaranteed to eventually arrive hbwever complex
intermediate interaction sequences would be.

ProPOSITION 7.1. (linear honesty)Let x: (1)' € A such that md(t) =t. Suppose

F P> A with A closed. Then P @) P' implies P’ 1y where | is an output aty.

For the proof we use the following lemma.

LEMMA 7.1. (linear actions) Let ' F P> A® 1 X with A closed. Then for each
P —* Py there exists P’ such that Pp —* P' where (1) P’ contains no active linear

input channels, and (2) P! s such that| is an output at X.

Proof. Without loss of generality assunfe= M1 P where eacl®, is prime (we can
ignore other shapes &fbecause if there is a restrictiomathen the corresponding action
type is again closed). Bibeing closed, all free outputsihare compensated by free input
channels which should be active by well-typedness. This meansRéslnput-prefixed
or, if not, it is output-prefixed withx. Suppose there is a linear input prefix with subject,
say,y; € {y}. SinceAis closed, there is a compensating output. SPeeNFe, this output
should be under some input prefix whose subject canngt liy acyclicity. This means,
say,y, ~ Y;. Again this should be compensated by some output, which should be prefixed
by an input with subject, but z cannot be amondy,y,} by acyclicity again. So set
z=ys. In this way we have a chain of forg}, ~y;,_; ~ .. ~ ¥} which exhaus{y}. But
this meangy/, has no compensating output, contradictkigbeing closed. Hence there is



no active linear input ifP, establishing (1). Since K is not active it should be under the
prefix of a linear input, this also proves (2), as required.

By CR of — and by Theorem 3.1, this establishes Lemma 7M.

Now Proposition 7.1 is immediate by noting that, after the mentioned input, the term has
the action type mentioned in the Lemma after it performs the appropriate input.

We can strengthen Proposition 7.1 by incorporating the possibility that the client itself
interacts with the server towards the eventual answer [30]. The central point of the present
liveness property is that, in spite of such nested, complex webs of procedure calls, each
client is still guaranteed to receive an answer, improving on preceding related type disci-
plines, cf. [40, 41, 66]. We can further guarantee this liveness property with non-terminated
and stateful (i.e. non-deterministic) computation [67]; this property plays as theoley r~
to establish further applications for information flow analysis of programming languages
[35, 69].

State and Non-functional Control. It is an important subject of study to extend our
typing system to allow incorporation of state, control and other non-functional elements.
The resulting calculi would be useful as a theoretical basis for the application of SN in a
wider realm. Such a formalism might also be useful as a meta-language for logical systems
with e.g. non-deterministic cut elimination procedures.

For stateful computation, [67] has verified that our proof method is also applicable in
SN for first-order stateful processes combining the proof method established in Classical
Logics framework [43, 62]. The basic idea is first replacing replication with recursion [32],
then applying the term rewriting technique directly using the extended reduction. This
allows to carry over the SN type discipline and related results in imperative computation
involving non-trivial procedure calls in [35].

For the incorporation of control into the present type discipline, all we need is to elim-
inate | -1 types from the present system. In other words, the system presented in Section
2 already contains the calculus for (linear) control as its subcalculus. This means, among
others, the calculus satisfies all syntactic properties we have explored in Sections 2 and 3,
including strong normalisability. We have verified that a sequential version of this calculus
can fully abstractly embed Parigdigi-calculus. Further discussions on this calculus and
its extensions will be discussed elsewhere.

Second-order and Other Extensionsin Type Structure. Can the presented results be
augmented to cover more expressive notions of types studied in functional calculi? Adding
recursive types [50, 64] easily leads to a system that is not strongly normalising: for ex-
ample, the encoding, following Figure 8, Gfx.xx) (Ax.xx) becomes typable. Regarding
second-order types, our recent work [12] demonstrates that such extensions coexist har-
moniously with SN, as they do in the corresponding functional calculi. In particular, the
causality constraints formalised in the present paper are sufficient to encode System F
fully abstractly in the second-order extension of the present system. Other, more refined
type structures would also be worth studying in the present contextrtiadculus offers

a natural habitat to SN typing systems for stateful, control [29], interactive and mobile
computation.

Complex Causality. The present work adds minimum causality to the system in [11]
to ensure SN of replicated processes. However, our SN proof seems to be able to cope,



without significant change, with more complex causality relations: for example, we could
relax the channel type constraints and extend action types to finite graph structures between
arbitrary linear nodes as in [66]. An even wider class of SN interactions would be typable

if we further allowed edges of the more general fopmn— qy, wherep € {|,1,?} and

g€ {!,],1} (i.e. replicated and linear nodes can be mixed). Diverse structures would
be embeddable in such an extension, including full proof nets [9]. The status of strong
reduction would become subtle in this setting, cf. [22].

Game Semantics. In game semantics, “winning strategies” represent strong normalisa-
tion [3]. This representation ensures, essentially by definition, that composition of two
winning strategies will never go into infiniteactions (which would make the strategy
partial). This extensional representation of SN does not directly suggest concrete type dis-
ciplines to ensure SN for mobile processes, even though the liveness property discussed
in Proposition 7.1 closely corresponds to the games-based characterisation of SN. In this
context, we observe that the sequential version of the linealculus discussed in Section

5.3 is the linear refinement of the affine sequential calculus in [10, 11]. This immediately
shows that the typed sequential transition for the linear sequentialculus isinnocent

in the sense of [4,10,37]. The linear liveness in Proposition 7.1 further indicates that it
is total, in the sense that it is always defined for each legal input; and, moreover, we can
show it isfinite in that the cardinality of the induced innocent function for each process is
finite. It would be interesting to use the framework introduced in the present paper, among
others typed processes and their behavioural characterisation, for formulating and studying
various notions of SN and related ideas in game semantics (for example we may consider
explicit incorporation of acyclicity conditions).

Term Rewriting and Reduction Strategies. The proof method presented in this paper
uses the extended reducties to prove not only SN but also other results including a
fully abstract embedding of_, « ;. One of the merits in using> lies in the potential
applicability of various Term Rewriting Lemmas in the context of interacting processes.

In fact, technically speaking, this may be regarded as one of the main differences from
other studies addressing termination and other related properties of processes [41, 58]. Our
recent work [67] partly addresses this point. In Section 3, we define a reduction strategy of
— to prove SN. Like the left-most reduction strategy of Mealculus, this strategy could

be defined in the untyped setting in general, then could be used to prove the normalisation
theorem (i.e. it always derives a normal form if it exists). This opens possibility to study
various reduction strategies in the name-passing scenario, which had not been investigated
so far due to, among others, existence of structure rules. We may hope that, through such
studies, that the accumulated ideas from functional computation such as optimality [45]
may be transferable into non-deterministic and non-terminating interactive computation.
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APPENDIX A
A.1. PROOFS FOR SECTION 2

A.2. PROOF OF SUBJECT REDUCTION THEOREM

We prove Proposition 2.2 (1). The key point is to prove basic properties of algebra on
action types. We use the same routine as in [11, 32, 66]. We first show:

LemMMA A.1. Assume A A1 and Az are action types.

(1) A/Y is an action type.
(2) If A1 < Ay, then A1 ® A2 is an action type.

Proof. As the proofin Lemma 3.4 in [32]. (1) is trivial. The ca®€A1)Nfn(Az2) =0in
(2) is obvious. The other case is proved by induction on the si2g ahdA, using the BNF

representation of action typesm
LEMMA A.2. Let A1, Ag, Az be action types. Then we have:

(1) (commutativity)Assume A1 < Az. Then we have Ap <X A1 and A1 O A = A2 O A;.
(2) (associativity)Assume A1 < Ap and (A1 ©Ay) < Az. Then we have: (1) Ap < Ag
and Ay <Az, (2) A1 < (A20A3) and (3) (A1OA) OA3=A10 (A G Ag).

Proof. (1) is obvious by definition. (2) is proved by induction on the siz& pising the
BNF representation of action types. This is proved as (a special case of) Lemma 3.5 in
[32]. m

LEMMA A.3.

(1) If x:T1 € |Al and md(1) € {!,|} then there is no y:U € |A| such that y:T — X:T.

(2) B=?B and BoB=B.

(3) If A< B with A/X=Ag, %i:Ti € |Al, md(Ti) € {!,},1}, and n(B)N{X} =0, then
Ag < B and (A®B)/X=Ag®B.

(4) If A< B with A/R= Ao, % Ti € |Al, md(ti) € {!, 1,1}, and B/X=Bo, then Ao = B,
A=< Bg, Ay < B, and (A@ B)/X:Ao(DBo.

(5) Suppose A/X= Ao, B/X=Bg and Ag < Bg. Assume X :Tj € |A| with md(T;) €
{1,1,1}, and if %:T] € |B|, then Ty <T,. Then A< B and (A®B)/X= Ag® Bo.

Proof. (1) is by the definition of permissibility of», i.e. there is no edge to inputs and
1. (2) is obvious byt © T =1 with md(1) = ?. For (3), by (1), we can writd = ® i (X; : Tj —
A ® A sincemd(ti) € {!,],1} (noteA; may bed). Then byA < B, obviouslyAg = (A ®
A') < B. Hence we havéA® B) /X = (A/X® B/X) = Ag©® B. The proof of (4) is similar. (5)

uses (2)and (4). m
Remark.  If we delete the side conditiomd(ti) € {!,l,1} in (5), the property does

not hold. For counterexample, |8t= X1:T1 — X2:T2 andB = X2 : 12 — X1 :T1. Then
A/x1x2 < B/x1X2, butA® Bis undefined.



LEMMA A 4.

(1) FP>A and P=Q then F Qp A.

(2) Ex(¥:).PIX(V:T")Q> A implies H (V]:T")(P|Q) > A with T =Tj and T/ =T ©T].

(3) FIx(¥:7).P|X(Y:T)Q> A implies FIX(Y:T).P| (vy:T")(P|Q >A T =T and
T =10T.

Proof. The proof is essentially the same as in [11,32]. Asstinter> A. Then, as
in [11, Proposition 1 (ii)], there exists a minimum action tyfdg such thatAg C A; and
F P> Ag (since we only have to ug@veak) before restriction and input rules). Hence in
the following we only consider the minimum action types.
(1) By rule induction ore. The case oP|0= Pis easy becaus@is a unit of®. Similarly
the cases d?|Q= Q| P, and(P|Q)|R=P|(Q|R) are proved by Lemma A.2 (1) and (2),
respectively. Next take the structural rule

XYP)Q = x(¥(PIQ)  with x¢Z n(Q)

Assumet (X(¥)P)|Q > A such thaix ¢ fn(Q). By typing rules we can assuniex(y)P >

A; and Q> Ay with A; < A> andA; ©® A2 = A. By strengthening of bases we can set
{¥} Nfn(Az) = 0. Fromt X(Y)P > A; we deducé- P> A} @ §: T with A; = A} © x: (T)Pe.

By Lemma A.3 (5) and associativity, we hak¢ @ y:T < Ax and((A] ® ¥:T) © Ag) /Yo x:
(T)Po = A, so that- X(¥) (P|Q) > A. The inverse and other cases are similarly dealt with.

(2) It is proved by the same reasoning(8sbelow (the proof is simpler tha3)).
(3) We prove the monadic case. The polyadic case is just the same. Suppose

Fix(y:1).P|X(y:T)Q> A
Then, we have the derivations such that
Fix(y:1).P>A; and FX(y:T)Q> Az

with A &' (x: (1)! — ?A}) andA; ® A, = A. Then the above input and output processes
are derived byin') and(Out) from

FPoy:T@A] and F Qb (y:T — Ay) @A with (A, @A) ox:(T)” = As
First, byA; < Az, we haver = . Also by (iv), we haved] < (A, ® A}) andA] ® (A, ®
A7) = A1/XO Ag/X.
Supposend(t) =|. Then we have
FPIQprY:T® (A1/Xx® A2/X)
Hence by(Res), we have:
EVy:D(PIQ) > (Ar/x® Az/X)

Next we apply(Weak) to Az/x in order to obtairA,. Then we have:

FVY:D(PIQ) > A/XO Az



By (4) in Lemma A.3A1 ® A1/x = Ay, together with associativity, we finally have
Fix(y:1).Pl(vy:D)(P|Q) > A

The casend(t) = ? is just the same by replacigdy T above. ®

By the above lemma, we conclude with Proposition 2.2 (1).

A.3. PROOF OF STRONGLY CONFLUENCE

We prove Proposition 2.2 (ii). The only case for a critical pai(!&X).P, a(X)Q1) and
(fa(X).P, a(X)Q2). If Rcontains this critical pair, then we can write down

R= (ve)(la(X).P|a(®)Q1 |a(0)Q2| Q)

Suppose
R—s (v&)(ta(®).P| (v¥)(P|Qu) |a(0)Q2| Q) £'R, and
R— (v)(1a®X).P|a(®)Q1| (vX)(P|Q2) | Q) E'Re.
Then by contractingd(X).P anda(X)Q: in Ry, we have
def

Ry — (vO)(fa(®).P| (vX)(P|Qu) | (vX)(P|Q2) |Q) =P

Now by contracting&(X).P anda(X)Q; in Ry, we haveR, — P'. [ |

APPENDIX B
PROOFS FOR SECTION 3

B.1. PROOF OF PROPOSITION 3.1
(1) is essentially identical with the proof ef—, using Lemma A.4. For (2), first we start
from the following lemma about garbage collection and linear reduction. The proof is
mechanical. We assume all terms are typable.

LEmMA B.1.

(1) (postponement ofs §) If P—q Q= R, then for some S, P+ S—=¢ R. Similarly
if Pr>g Q= R, then for some S, PS4 R.

(2) (strong confluence of ) If P4 Qi (1=1,2), then Q1= Q2 or there exists R
such that Qj —g R.

(3) (strong normalisation ofsg) For all P, there exists Q such that P35 Q and
Q.

(4) (strong confluence ofy)) If P+ Qi (i=1,2), then Q1 = Qy or there exists R
such that Qi — R.

(5) (strong normalisation of+|) For all P, there exists Q such that P —| Q and

Q.

Let us define—md:ef (—+ U ). By postponement ofsg, if P—* R, then there exists
Ssuch thaP —4 S—¢ R Since— 4 always canonically terminates, we only have to show
the CR of—q (cf. [39]). For this, it is sufficient to show the followirgrip lemma.



LEMMA B.2. (strip) If P+—o PL and P —{ P>, then there exists P3 such that
P1 =g Pz and P> —q Ps.

Proof. The only interesting case is that an uncontructed message appears under a repli-
cated input. The proof we use here is similar to the one used in Chapter 11 Section 1 of
[7] based on the labelled reduction [45]. Our case is simpler since we only contract one
message at each step and there is no overlap of occurrences of two messages which are
duplicated from the same replication (cf. [45] and Section 11.2 in [7]).Aselbe the re-
sult of replacing the rede&(¥)Q1 in P by its reduct(vy)(Ry | Q1). If we keep track of
what happens wita(y) Q1 during the reductio® — § P>, then we can findPs;. To be able
to tracea(y)Q1, we define a new set of terms where uncontructed messages can appear
underlined [45]. Consequently, if we underlingn &(¥)Q1, we only need to reduce all

occurrences of the underlinedn P, to obtainPs. The rest is the just same as in [7]m

By Lemma B.2, we obtained CR-propertyef (Proposition 3.1 (2)). To prove that the
first statement in Proposition 3.1 (3), we note tAat 4 P' andSNe(P') does not normally
imply SNe(P) in untyped setting (e.d fre but (vX)!X(¥).Q —4 0). Hence we shall prove
this statement using postponement-ef, Lemma B.1 (1).

LEmMA B.3.

(1) If P—o P and SNe(P'), then SNe(P).
(2) Suppose P /0. Then Py P' and SNe(P') implies SNe(P).
(3) If P— P’ and SNe(P'), then SNe(P).

Proof. For (1), we can easily chedki— o B (i = 1,2) with P; = P, implies that there
existsRsuch thaP, —4 R. Then the rest is standard with Lemma B.2, cf. [1, 7, 36, 39]. (2)
is by strong normalisation and church-rosserg§. For (3), by (1) in this lemma, we only
have to prové® —4 P’ andSNe(P’) impliesSNe(P). Then by Lemma B.1 (1) there exists at
least one pass such tRit— P 4 Ry with Py i40. SinceSNe(R), we havesNe(P1) by
(2). Now by applying Lemma B.1 (1) again, we have sdMeuch thaP i, Py — g Pr
R4 with P 40. We again havéNg(P;) by (2), from which we can obtai&Ne(P) by (1),

as required. m

The rest of Proposition 3.1 (3) is straightforward by this and CR property.of

APPENDIX C
PROOFS FOR SECTION 4

C.1. PROOF OF PROPOSITION 4.5

LetR d:ef{(P, Q) | De - P=Q}. The statement say® C~. It is enough to show this in-

clusion under Convention 3.1 sineeis already closed undez. By Proposition 4.3 (3), it
suffices to sholRU = is a bisimulation with respect to prime syntactic transition. We first
consider the pair fronE1), C[X(¥)P]|x(¥).Q andC[(v¥)(P|Q)]. Let R= C[x(¥)P]|x(¥).Q



and set- R> A If FR - R, we have the following cases.

(1) CRGPIXT).Q = CROPIXFH.Q  (2) CRGPIXF).Q - (vy)(CPIIQ)
(3) CRYPIXF.Q 1 CROPIXHQ  (4) CRPPIXH.Q— CPIXH)-Q
(5 CX)PIXH).Q B cxw)PlIQ 6) CRIPIXH.Q L clPIx9).Q.

We shall now show that only the processes in (1), (2) and (3) are typable. To this end we
show by induction on the derivation 6fR> A thatx € A. This implies thatC[ ] cannot
contain an input at. Hence (4) is not typable. Similarly, no typable observer could contain
an output or an input a, making in (5) and (6) untypable.

The transition (1) is matched by a transitiof(vy) (P|Q)] LN C'[(vy)(P|Q)] while the
empty transition sequen@(vy)(P|Q)] matches (2) becaugg(vy)(P|Q)] = (vY)(C[P]|Q),
as can be shown by induction on the derivation of (2). Itis easy to se€[{vat) (P|Q)] LN
Cl[(vy)(P'|Q)] is an admissible match for (4).

Now assume tha& = C[(vY)(P|Q)] S R, FReAand- R — R. We have the follow-
ing causes of the transition.

[(v§) (PIQ)] — C'[(v})) (v3)(P'|Q)]
[(v

(v9)(PIQ)] — C[(v)(PIQ)]

(1) ClW(PIQ] —CIW)(PIQ]  (2) C
(3) ClW(PIQ] —CIW)I(PIQ]  (4) C

(1) is matched byC[X(Y)P]|x(¥).Q N C'[X(Y)P]Ix(¥).Q. For (2), we first show, by in-
duction on the transition, th&[ ] must be a reduction context. If the cont€ft] in the
definition of extended reduction (Definition 3.1) is restricted to a reduction context, then
the resulting relation coincides with—, hence also with= by Proposition 4.2. Thus we
obtainC[X(¥)P]|x(¥).Q — C[(v})(P|Q)] N C'[(vy)(vZ)(P'|Q)] as matching transition
sequence. The remaining cases (3) and (4) are dealt with in the same way.

Similarly for the pair from(E2), C[X(¥)P]|!x(¥).Q andC[(v¥)(P|Q)]|!x(¥).Q. Finally we
can immediately reason about the pair fr@s), (vx)!x(y).P and0, since no transition is
possible in either process. [ |

C.2. PROOF OF LEMMA 4.1

For (1), if a>-normal form contains hiding and/or redund@t=" cannot equate it
with the result of stripping them off; while if it doesn't, sinsenly strips off (rather than
increases) them, applyings the same thing as applyimg'. (2) is immediate by reaching
an ENF by Theorem 3.2 and then by stripping redundant hidingOabog > (which is
inside=). For (3), by definition the processes generated by the rules in Proposition 3.3
do not contain hiding and redundahtFor the converse we argue by strucrural induction
combined with these two conditions to shevmormal forms can be generated by the three
rules in Proposition 3.3. (4) is immediate from (3). For (5), we show thiPfarNF ¢
which is enough. Supposee NFe andP —5 P. We can easily checR P implies
P — P/, that isP — P’, which contradict$’ € NFe. [ ]

APPENDIX D

PROOFS FOR SECTION 5



D.1. PROOF OF PROPOSITION 5.2 (2)

The “only if” direction is immediate from the definition. For the “if” direction, Igf-]
be a context with its hole typed and the result typed: B with x fresh (if x € fn(A)
we can always use a copy-cat to mediateo a fresh name). Assume the latter con-
dition andC[Py] {li. If the hole ofC[-] is not under an input prefix, then we already
haveC| - | def (vin(A))(R|[ - ]). Suppose the hole is under an input prefix.C|P1] |}}
by C[P1] —— Xin;|C'[P10] keepingP; under the input prefix along the way (possibly with
some substitution) then we have€[P,] — Xin;|C'[P,], i.e.C[P2] /.. If not, then suppose
C[P1] = C'[P10] whereC'[P; 0] is the first configuration in which the input prefix is taken
off. Using copycats, we can represenby parallel composition and hiding, so that the
former condition gives u€[P,] ||\, as required. m

D.2. PROOF OF PROPOSITION 5.4

Both are mechanical by induction an Below we show the proof for (2), taking the
unary replicated case. Let= (p)' so thatly — X d:G'Xf!y(Z).T((v*v)I‘l[wi — z]P. LetP=
ClY(DRy]..[¥(ZRn] wherey(Z)R; exhausts all prime outputs iA (these contexts can be

nested). Then we have:

(WY (PIly—=X") =" CVD(RUXW)M[W = z]7)]..[(vD) (Ra[X(W)MT[wi — z])]
Cx(W) (v2) (Re|Mwi — z]P)]..[X(W) (v2) (R [Wi — 7]7)]
CIX(W)Ry{Z/W}]...[X(W) Ra{Z/W}]

CR@R...[XDR]

where: (1) the first extended reduction involvegeplications and 1 garbage collection;

and (2) the second extended reduction in by induction hypothesis. This also gives the base
case, where, with = ()', we can dispense with the second steps forward. Theigab
possible becausgare fresh w.r.tR;. Other cases are the same.

)
)

U

Il
Q

D.3. PROOF OF PROPOSITION 5.8
LetT® = (7)' andTy > arbitrary below. We first show:

(1) FMsg(m2AT > m:T° 02T

) FAgMN,AT=T om: (T 5T @ZTQEHf F[N: T/ Ju>u:T"® — E°.

(3) F Proji(m 2T > m: (T x T2)°®Z:T.

(@) FSum(MZ{(x)M DT >m:(Ti+ o) °@E° if F [Mi: Ty u: T — E° (i=1,2)
for someTy ,.

For proofs, (1) is immediate from Proposition 5.4 (1). The remaining statements are
direct from the definition. For example, let[N : T']y > u: T’ ® E°. For simplicity,
assumeT° = (1) and, accordinglyZz = z. By (1) we have, noting thahd(t) =1 in this

casel c(w).Msg(w,2)T" > ¢:(T°)+ — z:1. Together with the given assumption, we obtain:
Fm(ne) ([N : T'n | c(w).Msg(w,2)™") > m: (T (T°)")’ © z:T® E°

as required. [ |

Remark.  In the abovemin Arg(m N,2)T=T, Proj;(m,2)T andSum(m,Z {(x)M;})T
is typed by the dual of the encoded function, product and sum type, respectively, indicating
the role of these expressions as the desctructors of the corresponding constructors.



Now we prove Proposition 5.8 by rule induction of the nfap: TT v.
Case|[[x: T]u. Direct from Proposition 5.4 (1).

Case[[() : uni t Ju. Immediate from the definition.
Case[[Ax: T'.M : T' = TJ,. Immediate from the induction hypothesis.

Case[MN : T],. By induction hypothesis ofN : T'] we can apply (2) above targ(m,N,2) T=T).
By induction hypothesis ofE - M : T'=T]mwe have- [M: T'=T]me m:(T'=T)° —
E°. Thus, with[T] = (?)':

F (vmn)([M : T'=T]m|Arg(mN,2)T=T) > 22T 0 E°
from which we obtair-!u(?).(vmn)([M : T/ = T]m|Arg(m,N,2T=T) > u: T° — E°.

Case [(M1,My) : T1 x T2])y. Direct from the induction hypothesis.

Case [ (M) : T]u. By (3) above and induction hypothesis, arguing as in the cafe f:
T]u in the last step.

Case[[inl(M) : T 4+ T']Jy. Direct from the induction hypothesis.
Case [case L of {inj(X : Ti).Mi}ic(1,23 : T]u- By Lemma (2) above and by induction
hypotheses, arguing as in the cas§MN : T]), in the last step.

D.4. PROOF OF PROPOSITION 5.9
The proof uses the following variation of the replication theorems [49, 53].
LemmMa D.1. (VX)(C[[[x: TJlu]|[[N : TTx) =" (vX)(C[[NJu]|[N]x) assuming typability.

Proof. LetT° = (7)' and[[N: T]x d:ef|x( W).P. We have:

o
&

e

(WOCI:TIAIIN: T = (V(ClU@) W) [wi — Z]9][!X(W).P)
= (V)(CLU@).(vw) (PN [wi — z]%)]|!x(W).P)
|_>

(VX (Cltu(w). PN : TT)
The last step is by Proposition 5.4 (2)m
We can now prove Proposition 5.9. F@) (assumindM] y d:ef!u(Z).P, we calculate:

[AXM)NJy £ 1u().
2 1u(2).
u(?).

(
u(z
def [[Nl

~

(vm)('m(xy).g(m') M [M(xy) (INDx|y(7) . Msg(m'2)))
(vx) ([M | [NTx| Msg(m2))

(vX)(P|[N]x) (Prop. 5.4 (2))
P{INT vy [NTve / [Xva - (X } (LemmaD.1)
{N/x}u,

as required. For (prg), let[M1 : T1]lu d:'3'(!u(2).P below.

— = =

[ru(My, Mz) Tl]]u

lu(2).(v )( m(c).e(mump)N M : Ti]lm [M(c)c(Mm). Msg(my, 2))
H3 'U(?)( )(”[[M Tilm [Msg(m,2)
P

—* u(2). (:e[[ Tifw). (Prop. 5.4 (2))



For (casg), we again lefM1 : T1]ly d:'3f|u(2) P.

[case ini(N) of {ini(Xi: Ti).Mi}: T]u
= 1) (V1) (11(0)-Tima (xa) [N : Talleg[M(O)C[&i (). (vm) ([M; = TJm| Msgg{m, 2))))
=2 (D). (vxa) (VM) ([M 2 TlmlMsg(m,2)]IN : Ta]l,)
=" U(2)-(vxa) (PN = Ta]lx) (Prop. 5.4 (2))
= [[Ml{N/xl} T, (LemmaD.1)
hence done. [ |

D.5. PROOF OF LEMMA 5.3
We use two observation which are often useful.

LEMMA D.1. Let R be a replicated process with subject X and assume  C[P]|R|S>
A for some A such that X does not occur in C[ - |. Then, under the standard bound
name convention, (VX)(C[P]|R|S) = C[(vX)(P|R)]|S.

Proof. Immediate by performing extended reduction at occurrenca&sroP on both

sides, and notingrC~C=. H

LemMA D.2. Let = Quz2> A and let {y} C fn(A) such that md(A(Yi)) = ? for each
Vi € {V}. Suppose for each F R>¥:T we have (V)(Q2|R) e Q for some Q. Then
Q1= Q.

In the statement above, observe we first choose an arbitrary ?-part of the given action
type.
def

Proof. Below Q1 » andAare as given above, and we RE efy TandC = A/y.

Vi Re A@u:B (vin(A)(QuIR) U, & (vin(A))(QzlR) 1) |
VESeBYEFT>Cou:B. (Vin(A)(Q1|ST) I} < (vin(A)(Q2T) UY)
v S> B. (vin(B))(Qu/9) = (vin(B))(Q2]9

v S» B. (vin(B))(Qu/9) ~ (vin(B))(Q2]9

Vi S» B.3Q. (vin(B)) (QuS) Ve Q' and(vin(B))(Q2lS).

Q=Q

tfhteee

The first equivalence is by Proposition 5.2 (2). The second equivalence is by taking
each compensating replicated term to be a prime whose only free name is its subject
(this does not lose generality since, by extended reduction with other replicated processes,
all ?-moded free names can be compensated and eliminated). For the third equivalence,
the “only if” direction is by contradiction, while the “if” direction is by noting, at type
x: B, the correspondence in convergence andoincide. The last two (reverses) impli-

cations are, respectively, byc = (cf. Proposition 5.3) and by» C~ (cf. Theorem 4.1). B

Below we only show the case faet x = zF in F’ (other cases are easier). Writg", for
[O)°Tu- AssumeF']y = oef lu(w).P. Then we have, using the induction hypothesis, extended



reductions and Lemma D.1,

(let x=2zF in F')}
EIF{F° X}
(VX (F'3l(ZF)3)
(vX)('u(9).P| [2F])

(vxF)(u(D).P | Ix(W).Arg(zf W) | [F]f)

R 1R X

Letthe resulting term b8;. We compar61 with the direct translatioB, d—Ef'u( V).Z(fo)([F'T+|c(x).P)

For this purpose we compoSewith Q 'z(fc) (X)!x(W)Q'. Note that we can assume any
compensating processahas this form without loss of generality (Ijyexpansion). Im-
mediatelyS; |Q — (vxf)(1u(V).P| !x(W).Q"|[F] ¢) | Q, while, for the right-hand side, we
have:

SIQ =T 1u().(v B ([F T ['x(W)Q1P) | Q
= (vix)('u(¥).P| Ix(W).Q | [F'Tr).

We can now use Lemma D.2. |

D.6. PROOF OF LEMMA 5.4
For (1), writeQ1 (resp.Q) for the process on the l.h.s. (resp. r.h.s.) of the equation for
brevity. By the conditions on typability and by ENFs, we should haye&; »>z: 1" ® x:
p' ® ?A for someA. We prove the following claim, which easily entails (cf. Lemma D.2 in
Appendix D.5) the required equality.

Claim. Assume, for each - U > A® x: P, we have (Vvin(A)x)(Qi|U) Je Q (i = 1,2) for
some Q. Then Q1 = Q.

To prove the claim, lef = 0 for simplicity, which does not lose generality since processes
compensating\ are simply absorbed intQ1> by extended reduction, resulting processes
in the same shape. For the same reason we safely assume the occurxanceach term

is unigue. Thus we compose !x(rc).S> x: p to both sides and demonstrate the claim. By

Proposition 3.3 and by noting(R|S) C {rc}, we have(vT)(R|S) |} e Tin;i(W;)T for some

T. Assume furthetvw;)(T|P) e P'. ForQ; we obtain:

(VX)(Q1 | X(Tc).S) £ (vx)( &i
=+ (V) (R| S| c[&i (Wi
'_>*
= i
" z(e)le(y).F

1

For Q2 we have:

(vX)(Q2 | IX(70).§) = (vx)(2(e)!e(y) X(FO)(R | cl&i(w).R]) | IX(FC).S)
(VFe)(R| S| c[&i(W).R])

le(y).
le(y). (VW|)(T | R)

hence as required.



For (2), since a linear output cannot occur freely under a replicated input, given a se-
quential L(X2).P with z of type (1)T, we can writeP asC[z(c)Py]..[z(c)Py] where either
P =Z(c)P' or each hole is under a linear unary/branching prefix. Treating w.l.0.g. unary
prefix as a special case of branching prefix, we prove (2) by induction on the depth of
in P, where thedepth of zin P is the maximum number of prefixes from the subjecPof
to an occurrence af in P. If the depth is zero, there is nothing to prove. Let the depth
ben+ 1 and letP = C[x(Te)(Re[&i.z(c)!c(¥).R])] where the mentioned occurrencexof
is the deepest one (by which they can only occur immediately afteBy (1) above,
P = C[z(c)!c(Y).X(Fe) (Rle[&i .R])]. By induction hypothesis we are done.

(3) is because the transformation in the proof of (2) can be carried out incremermally.



