
Final Report on EPSRC grant GR/S31396/01 Principal Investigator: Abbas Edalat

Domain-theoretic Solution of Differential equations
http://www.doc.ic.ac.uk/exact-computation/

Abbas Edalat and Dirk Pattinson

Department of Computing, Imperial College London

November 29, 2006

1 Introduction

The major problem with standard computational methods in solving initial value problems (IVP), defined
by ordinary differential equations (ODE’s), is that estimating the global error, which arises from initial,
local as well as round-off errors due to floating point arithmetic, is extremely involved and the error
bound determined for the approximate solutions can be generally very conservative. Using such bounds
to meet a given precision can lead to impractical results which are essentially useless [17, page 7]. This
problem is more aggravated in the case of stiff or even mildly stiff differential equations. Consequently,
the lingering question often encountered which cannot be effectively answered is: How accurate is the
approximate numerical solution obtained? (see [21, Section 3.5 and page 127].)

Validated numerical algorithms provide a numerical solution together with a guaranteed error bound.
Validated real number computation in general, and therefore also validated numerical solutions of dif-
ferential equations in particular, have traditionally be the focus of interval analysis. In the approach of
interval analysis, real numbers are accounted for using intervals with machine representable endpoints,
and outward rounding is applied whenever the result of an arithmetic operation is not machine repre-
sentable. Interval analysis begins with the publication of Ramon Moore’s book [24] that adapts a large
number of numerical techniques to an interval setting. While methods of interval analysis are always
guaranteed to produce an interval that contains the real value of the solution of a particular problem,
there is no control over outward rounding, which is relegated to the floating point implementation of the
particular system that runs the algorithm. For the same reason, interval techniques do not provide an
adequate framework to reason about computability and complexity of problems in real analysis.

Domain theory [1], on the other hand, is faithful to the notion of computability and – applied to
problems in numerical analysis – provides a very fine grained control over the round-off error. This is
achieved by embedding the objects of interest (e.g. real numbers, continuous or differentiable multi-
variable functions) into an appropriate domain, a directed complete partial order where the ordering
signifies increase in information content. By constructing the embeddings such that they take values in
ω-continuous Scott domains, one can borrow from the rich theory of computability over domains, and
is also in a position to derive proper data types that serve as the basis for the implementation of the
algorithms in a high-level programming language.

Following the construction of domain-theoretic models for measure and integration theory, iterated
function systems, exact real number computation, solid modelling and computational geometry, and
their applications in reliable numerical and geometric computation since the early 1990’s [3, 7, 5], we
have embarked on obtaining domain-theoretic solution of IVP’s in this project.

1.1 Background on ODE solving in Interval Analysis

The first treatment of initial value problems in the context of interval analysis dates back to Moore’s
book [24] in 1966. In this book, Moore translates Euler’s Method for solving initial value problems into
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the context of interval analysis. This results in algorithms that always give guaranteed bounds of the
solution, but no estimates for the speed of convergence are possible. Moore’s algorithms have been refined
in subsequent years, and have been implemented in the software packages AWA [23, 22] in the 1980s and,
more recently, in VNODE [27] and ADIODES [30]. The main body of research on validated methods for
solving differential equations in the context of interval analysis has been concerned with optimizations
of the basic principle outlined by Moore [24]. Sophisticated methods have been devised to control the
size of the time-steps on which the method relies and the so-called wrapping effect [15, 25, 26]. While
this work certainly pushes further the boundary of problems amenable to the interval analysis, it is only
the domain theoretic view that allows us to state and prove assertions about the convergence speed of a
particular method. Moreover, domain theory gives rise to directly implementable data types that can be
used in implementations of the ensuing algorithms in high-level programming languages.

From a practical point of view, all the implementations known to us [23, 30, 27] assume that the vector
field that defines the differential equation is smooth and rely on automatic differentiation techniques to
compute interval enclosures of the true solution. This contrasts with the domain theoretic approach,
where we use a bare minimum of assumptions: here, vector fields are only assumed to be Lipschitz
continuous, and we have outlined how to use the domain theoretic derivative [9] to obtain approximate
information about derivatives to improve convergence speed.

2 Research Achievements

This project has been aimed at solving ordinary differential equations up to any guaranteed degree of
accuracy. It overcomes a major difficulty of existing numerical methods, where tight and practical error
estimates, that moreover incorporate the incurred round-off errors, are extremely hard to obtain. All
papers and implementations of the project are available on-line at the project’s webpage [16].

2.1 Domain of differentiable functions

We have developed a domain-theoretic model for differential calculus that allows to tackle IVP’s. Our
framework is centred around a domain for continuously differentiable multi-variable functions. Elements
of this domain represent consistent partial information about a (differentiable) function and its first
derivative. The consistency predicate is shown to be decidable on the basis elements of the domain,
namely step functions. (As in classical mathematics, step functions in domain theory take only finitely
many values, in this case intervals). Moreover, this newly introduced domain carries an effective structure
and therefore provides an adequate framework for questions related to computability and complexity and
gives rise to proper data types to represent differentiable functions in high-level programming languages,
all of which go well beyond what interval analysis provides.

We have constructed a computable, domain-theoretic extension of Picard’s operator [6] on this domain
and shown that, for any computable vector field, it has a computable least fixed point, i.e., a computable
interval-valued function which contains all classical solutions to the IVP, thus providing lower and upper
bounds for the solutions. For a computable Lipschitz vector field, this least fixed point will be precisely
the unique solution of the IVP and our computability result then is reduced to the classical result in
computable analysis [29, 31].

Function information is represented using the domain of interval valued functions of a finite number
of real variables. This simple domain is employed to solve an IVP in an exact framework. It provides
the data type required both to represent the vector field with which the ordinary differential equation is
defined and the solution to the IVP. It also enables us to construct a rigorous framework for the work in
interval analysis on solving IVP’s, in which we can study the soundness and completeness of the interval
approach.
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2.2 Soundness and completeness for solving IVP’s

We have used the interval domain to develop a computable framework for solving differential equations
such that any computable differential equation with a computable initial value has a computable solution.
We have achieved this in two different ways: (i) by constructing a computable, domain-theoretic extension
of Picard’s theorem [10, 11], and (ii) by constructing a computable, domain-theoretic extension of Euler’s
method in solving ODE’s [13]. The latter is closely related to the scheme used in interval analysis to
solve IVP’s [24] and formalizes this approach within domain theory.

In both frameworks, we have obtained algorithms for finding approximations to the solution of an
initial value problem given by a differential equation. The vector field that specifies the IVP is defined in
terms of elementary functions, which are themselves represented as least upper bounds of step functions.
The approximation of the vector field in terms of step functions is obtained by employing existing packages
of interval analysis to find the interval range of elementary functions. Our algorithms produce, at each
stage of computation, two piecewise liner functions that provide lower and upper bounds to the solution.

The solution of the IVP can then be obtained as a piecewise linear function with the precision required
by the user. Both frameworks are shown to be sound, i.e., the solution of the IVP is always contained
within the approximating lower and upper piecewise linear functions, and complete, i.e., the sequences
of lower and upper piecewise linear approximations respectively converge from below and above to the
solution. Working with a domain-theoretic basis that is defined in terms of rational or dyadic numbers
guarantees that completeness of the framework carries over to implementation.

2.3 Algebraic complexity and implementation

We have given lower bounds for the algebraic complexity of the algorithm. The complexity of representing
the output is linear in terms of the complexity of the approximation of the vector field by step functions.
The speed of convergence to the solution is exponentially fast if the approximating step functions converge
exponentially fast to the vector field defining the IVP.

We have produced prototype implementations of our algorithms in C, based on interval analysis
packages that approximate the range of elementary functions; these packages are only available in C. Two
implementations have been undertaken, one using the domain-theoretic extension of Picard’s theorem and
one using the domain-theoretic extension of the Euler method. These are made available in the public
domain [19].

The space complexity is linear for the domain-theoretic extension of the Euler method, but it ex-
plodes exponentially for the Picard method. Thus, the Euler method is the preferred framework for our
implementation and it competes well with the corresponding method in interval analysis.

2.4 Other methods and classes of ODE’s

Second order Euler method. The full domain of the differentiable functions with its consistency
predicate is employed to develop a domain-theoretic extension of Euler’s method of order two using the
domain-theoretic derivative (equivalently the Clarke gradient [2]) of the vector field, which is a novel use
of the Clarke gradient in solving initial value problems 1. This allows us to obtain solutions of the IVP
defined by vector fields which are non-smooth based on an interval version of the Taylor series expansion
using the interval-valued derivative of the function, which as indicated in the Introduction gives a new
method in interval analysis for solving IVP’s.

Linear boundary value problem. We have obtained a domain theoretic framework for obtaining
exact solutions of linear boundary value problems [28]. Based on the domain of compact real intervals,
we show how to approximate both a fundamental system and a particular solution up to an arbitrary
degree of accuracy. The boundary conditions are then satisfied by solving a system of imprecisely given
linear equations at every step of the approximation. By restricting the construction to effective bases of

1The domain-theoretic derivative coincides with the Clarke gradient for locally Lipschitz functions on finite dimensional

Euclidean spaces; see below.
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the involved domains, we not only obtain results on the computability of boundary value problems, but
also directly implementable algorithms, based on proper data types, that approximate solutions up to an
arbitrary degree of accuracy. As these data types are based on rational numbers, no numerical errors are
incurred in the computation process.

IVP’s with imprecise initial value or vector field. This work will also enable us to solve
differential equations whose vector fields are interval-valued and/or the initial value is uncertain, giving
rise to new classes of solutions of differential equations. In the case of IVP’s with uncertain initial values,
our algorithms produce approximations, respectively from below and above, which converge to the least
and greatest solutions possible with the uncertain input. In the case of imprecise vector fields, we obtain
lower and upper bounds for any solution of the IVP.

2.5 Application to hybrid systems

We have used our data type for solving initial value problems to develop, for the first time, a denotational
semantics for hybrid systems, i.e. systems that combine discrete and continuous behaviour, where the
latter is governed by a family of initial value problems. The reachable states of a hybrid system that
satisfies a non-zenoness condition, are obtained as the unique fixed point of an operator, called the forward
action of the hybrid system, on the domain of (time dependent) states of hybrid system.

The denotational semantics is defined as the least fixpoint of the forward action operator on the
continuous domain of functions of a non negative real variable, that take values in the lattice of compact
subsets of n-dimensional Euclidean space. The semantic function assigns to every point in time t the
set of states the automaton can visit at time t, starting from one of its initial states. Our denotational
semantics for non-linear hybrid automata is related to the operational semantics given in terms of hybrid
trajectories.

Our main results are the correctness and computational adequacy of the denotational semantics with
respect to the operational semantics given in terms of hybrid trajectories. Moreover, we show that our
denotational semantics can be effectively computed, which allows for the effective analysis of a large class
of non linear hybrid automata. This enables us to effectively approximate the reachable state of such
hybrid systems [14].

2.6 Implicit and inverse function theorems

As a byproduct of our work on the domain for differentiable functions we have obtained a domain-
theoretic construction of the inverse and implicit functions theorems [12]. This has been achieved by
formulating a domain-theoretic calculus for differentiable functions, which includes addition, subtraction
and composition. Using the domain for differential functions, we have then developed a domain-theoretic
version of the inverse function theorem and implicit function theorem, in which, subject to the usual
conditions, the inverse function and the implicit function and their derivatives are obtained as fixed
points of Scott continuous functionals and are approximated by step functions.

This means that from an increasing sequence of step functions converging to a function and its
derivative in the domain of differentiable functions we can effectively obtain an increasing sequence of
step functions converging in this domain to the inverse function and its derivative, and also effectively
obtain an increasing sequence of polynomial step functions whose lower and upper bounds converge in the
C1 norm to the inverse function. A similar result holds for implicit functions. Combined with the domain-
theoretic model for computational geometry [7, 5], this provides a robust technique for construction of
curves and surfaces in geometric modelling and CAD.

2.7 Continuous derivative for functions

As a further area of research, the domain-theoretic derivative for locally Lipschitz real-valued functions of
a finite dimensional Euclidean space has been shown to coincide with the Clarke gradient, which is used in
non-smooth analysis and control theory. Since any such locally Lipschitz function together with its Clarke
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(or domain-theoretic) derivative is a maximal element of the Scott continuous domain of differentiable
functions equipped with an effective structure, we have obtained a computable representation for the
Clarke gradient. Moreover, the domain-theoretic derivative, or the L-derivative as we have called it, can
be extended to real-valued functions on Banach spaces. It is not known if the L-derivative, defined using
domain theory, and the Clarke gradient coincide on infinite dimensional Banach spaces. As with the
Clarke gradient, the values of the L-derivative of a function are non-empty weak* compact and convex
subsets of the dual of the Banach space. The L-derivative, however, is shown to be upper semi-continuous
(equivalently Scott continuous), a result which is not known to hold for the Clarke gradient. Thus, the L-
derivative provides, for the first time, a notion of derivative of real-valued functions which is continuous on
any Banach space. We also formulate the notion of primitive maps dual to the L-derivative, an extension
of Fundamental Theorem of Calculus for the L-derivative and a domain for computation of real-valued
functions on a Banach space with a corresponding computability theory [4].

2.8 Future work

Second order Euler method. Based on the theoretical framework for a domain-theoretic version of
the second Euler method using the Clarke gradient for the first non-trivial term of the Taylor series
expansion of the vector field [9], we intend to develop the full details of the algorithm and implement it.
Boundary value problems via domain theory. We have already developed a domain-theoretic
framework for linear boundary value problems [28], which we will extend to nonlinear problems.
Partial differential equation. PDE’s provide an infinitely more challenging venture than ODE’s.
However, using a generalization of Picard’s method we aim to construct a domain-theoretic framework
for solving PDE’s defined by analytic functions.
Euclidean manifolds. Based on the domain for multi-variable differentiable calculus, we seek to develop
a domain for orientable, Euclidean and Lipschitz manifolds with applications in geometric modelling.

3 Project plan review and expenditure

In the early months of the project, as envisaged in the original proposal, we used a domain-theoretic
extension of the Picard theorem on the domain of differentiable functions, which involved the notion of
strong consistency of the function and derivative parts as well as updating both of these parts at each
iterate of the associated Picard operator [8, 6]. Marko Krznarić’s PhD thesis presents the development
of this method [20].

However, in joint work with Dr Dirk Pattinson we soon developed a far simpler framework based on
a domain-theoretic extension of the Picard operator on the function part of this domain, which allows
us to obtain the solution of the IVP by updating only the function approximation without needing to
update the derivative part or considering the strong consistency predicate. Unforeseen in the original
proposal, this new framework has since been the focus of our work. It has allowed for a straightforward
analysis of the algebraic and computational complexity of the resulting algorithms and has enabled us to
have a more efficient implementation as well. Furthermore, the first order domain-theoretic Euler method
developed in the new framework is closely related to the corresponding interval analysis method, thus
allowing us to make a direct comparison between the two methods and discover the extra advantages of
using domain theory in obtaining completeness of the framework and its complexity analysis.

Consequently, Dr Pattinson, who was a postdoc in Munich at the time spent a whole year at Imperial
College on a DFG visiting fellowship (April 2004-March 2005). Later, he continued to visit us on a
regular basis and worked on the project as a consultant and visiting researcher. Dr Khanban did the
implementation of the project while he completed a part-time PhD on a related topic, namely a domain-
theoretic algorithms for computational geometry [18].

We managed to obtain all manuals and software tools, and in particular the interval analysis packages,
as open source which substantially cut down on our projected budget for consumables. On the other
hand, instead of two PC’s we purchased one PC and two laptops since Abbas Edalat was on sabbatical
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in 2005-2006 and had to work on the project while visiting overseas universities and Ali Khanban who
was doing the implementation took a posdoctoral job after finishing his PhD in October 2005 and had
to work from home.
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