
Porting a Fortran Oceanographic

code to GPUs; the gNEMO Project

Andrew Porter, Stephen Pickles

& Mike Ashworth

Computational Science &

Engineering Dept.

 STFC Daresbury Laboratory

Contents

• Oceanography – NEMO

• Accelerator Directives

• Moving a Routine to a GPU

• Performance Results

• Conclusions and Future Prospects

• Acknowledgements

Contents

• Oceanography – NEMO

• Accelerator Directives

• Moving a Routine to a GPU

• Performance Results

• Conclusions and Future Prospects

• Acknowledgements

NEMO

• Widely-used European ocean model

• Fortran90 and MPI

• Highly portable

• Memory-bandwidth

bound

• ~20 years of

development

http://www.nemo-ocean.eu/

Contents

• Oceanography – NEMO

• Accelerator Directives

• Moving a Routine to a GPU

• Performance Results

• Conclusions and Future Prospects

• Acknowledgements

Accelerator Directives -

Motivation

• CUDA & OpenCL are C based

• NEMO core is ~100K lines of Fortran90

• Performance

– GPUs have ~10x peak memory bandwidth

of a CPU

– Maintain single code base but add option

to use GPU if available

• Portability

– not every computer has a GPU attached

Accelerator ‘Directives’ - Options

Approach Notes
Fortran

support

PGI Accelerator

Directives

Currently NVIDIA specific, basis

for OpenAcc
Yes

HMPP

Workbench

Can generate CUDA and OpenCL

code, will support Intel MIC in

2012.

Yes

PGI CUDA

Fortran
NVIDIA specific Yes

OpenCL Portable, open standard No

CUDA C
Widely used, mature and low-level

but NVIDIA specific
No

Contents

• Oceanography – NEMO

• Accelerator Directives

• Moving a Routine to a GPU

• Performance Results

• Conclusions and Future Prospects

• Acknowledgements

Porting a Routine I

• Mark-up region to accelerate

– (Move region into a separate ‘codelet’)

• (In-line any routine calls in region)

• Make all loops explicit

– no array(:,:,jk) notation permitted

• Mark-up the loops to parallelize

• Permute loops for memory coalescing

– Want consecutive threads to work on

consecutive memory addresses

DO jn = 1, kjpt

 zdit(1,:,:)=0.e0_wp

 DO jk = 1, jpkm1

 DO jj = 1, jpjm1

 DO ji = 1, jpim1

 zdit(ji,jj,jk) = (ptb(ji+1,jj,jk,jn) –

 ptb(ji,jj,jk,jn))*umask(ji,jj,jk)

 END DO

 END DO

 END DO

END DO

Code Example

DO jn = 1, kjpt

 zdit(1,:,:)=0.e0_wp

 DO jk = 1, jpkm1

 DO jj = 1, jpjm1

 DO ji = 1, jpim1

 zdit(ji,jj,jk) = (ptb(ji+1,jj,jk,jn) –

 ptb(ji,jj,jk,jn))*umask(ji,jj,jk)

 END DO

 END DO

 END DO

END DO

Code Example

!$hmpp parallel

 DO jk = 1, jpkm1

!$hmpp parallel

 DO jj = 1, jpjm1

 zdit(1,jj,jk)=0.e0

 END DO

 END DO

DO jn = 1, kjpt

 zdit(1,:,:)=0.e0_wp

 DO jk = 1, jpkm1

 DO jj = 1, jpjm1

 DO ji = 1, jpim1

 zdit(ji,jj,jk) = (ptb(ji+1,jj,jk,jn) –

 ptb(ji,jj,jk,jn))*umask(ji,jj,jk)

 END DO

 END DO

 END DO

END DO

Code Example

!$hmppcg permute jj,ji,jk

DO jk = 1, jpkm1

!$hmpp parallel

 DO jj = 1, jpjm1

!$hmpp parallel

 DO ji = 1, jpim1

 zdit(ji,jj,jk,1) = (ptb(ji+1,jj,jk,1) –

 ptb(ji,jj,jk,1))*umask(ji,jj,jk)

 zdit(ji,jj,jk,2) = (ptb(ji+1,jj,jk,2) –

 ptb(ji,jj,jk,2))*umask(ji,jj,jk)

 END DO

 END DO

END DO

Loop over jn

pushed inside

& unrolled

• Analyse data transfers & work to reduce:

– Keep constant arrays on the device

– Asynchronous data transfer & kernel

execution

– For halo swaps, transfer halo regions only

– Overlap transfers of halos to/from GPU with

halo packing/unpacking on host

– #include halo pack/unpack code as can’t

call subroutines on GPU

Porting a Routine II

Code Example II

 END DO

 END DO

END DO

CALL halo_swap(zwi(:,:,:,1))

CALL halo_swap(zwi(:,:,:,2))

DO jk = 1, jpk, 1

 DO jj = 1, jpj, 1

 DO ji = 1, jpi, 1

kernel2 (doesn’t

change zwi)

kernel3

Code Example II

!$hmpp <traadv_tvd> kernel1 waitstore,

args[zhaloswi]

CALL unpack_halos(zhaloswi, zwi, 1)

CALL unpack_halos(zhaloswi, zwi, 2)

CALL halo_swap(zwi(:,:,:,1))

CALL halo_swap(zwi(:,:,:,2))

CALL pack_halos(zhaloswi, zwi, 1)

CALL pack_halos(zhaloswi, zwi, 2)

!$hmpp <traadv_tvd> kernel3 advancedload,

args[zhaloswi], asynchronous

How many extra lines of code?

traldf_iso traadv_tvd trazdf_imp ldf_slp

0

200

400

600

800

1000

1200

Original

Directives

N
o
.
o
f

li
n
e
s

Porting a Routine III

Contain

halo swaps

Example – Tracer Advection

• Originally ~400 lines; GPU version

~1000 lines!

• One child routine (80 lines)

– Contains one halo swap => splits routine

into two codelets

– Called twice => in-lined twice

• Six separate codelets

– Six lots of routine interface descriptions

• 16 halo swaps, all for 3D arrays

Contents

• Oceanography – NEMO

• Accelerator Directives

• Moving a Routine to a GPU

• Performance Results

• Conclusions and Future Prospects

• Acknowledgements

Results - Hardware

• ‘cseht’ & ‘SiD’ machines at Daresbury

• Quad-core Intel Nehalem processor

• E5540 @ 2.53GHz

• NVIDIA S1070 server

• contains four M1060 cards

• ‘Tesla’

• NVIDIA M2050

• ‘Fermi’

Optimising data transport
- transfer halo regions only

Nehalem Tesla (whole arrays) Tesla sm_20, Fermi sm_13, Fermi

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Compute Transport

T
i
m

e

p

e
r

k
e
r
n

e
l

c
a
l
l

(
s
) Tracer advection kernel

with ORCA1 grid

Kernel Timings

Comparison with OMP
(ORCA2, traldf_iso compute only)

Sub-optimal

scaling due to

problem size and

memory bandwidth

Integration with NEMO

Contents

• Oceanography – NEMO

• Accelerator Directives

• Moving a Routine to a GPU

• Performance Results

• Conclusions and Future Prospects

• Acknowledgements

Conclusions

• Successfully ported four routines to GPU

using HMPP Workbench

• No speed-up for the sea-ice routine

• Basic porting is fairly straightforward

– Have to in-line subroutines

– MPI calls must be on host

– Can also end up restructuring for performance

• Must work hard to reduce data transfers

• Fragile code

Future Prospects I

• hmpp currently the most

mature directives option

– Also supports asynchronous

data transfers

– Soon to support Intel MIC

• OpenACC announced at

SC11

– Based on PGI’s model

– PGI, nvidia, Cray & CAPS

– Initial spec. quite basic

• GPUDirect & multi-GPU codes

– Share pinned memory with Infiniband

interconnect

– DMA between GPUs

– Avoids doing a copy in system memory for

MPI calls

• Move the GPU onto the motherboard

– Nvidia’s Denver, AMD’s Fusion, Intel’s MIC

– A single memory address space?

Future Prospects II

Acknowledgments

• NERC for funding gNEMO

• DiSCO at Daresbury for systems

• Igor Kozin, Xiaohu Guo & Stephen

Pickles for advice/discussions

• PGI technical support & forum

• CAPS technical support

Extras...

Scaling of OMP version

of lim_rhg

