
Introduction to Custom ComputingIntroduction to Custom Computing

 Oskar MencerOskar Mencer

 oskar@doc.ic.ac.uk

ObjectivesObjectives

• What is Custom Computing, and Why

• Compilation issues

• Run-time issues

• Systems: putting it all together

Overview of Custom ComputingOverview of Custom Computing

1. FPGAs: what and why1. FPGAs: what and why
 FPGA, the big picture
 FPGA devices

4. Putting it altogether4. Putting it altogether
 system view
 PAM: a PC-size system
 SONIC: a PCI card

2. Compiling to FPGAs2. Compiling to FPGAs
 architecture generation
 compiler passes

3. Run-time reconfiguration3. Run-time reconfiguration
 generating configurations
 - at compile time, at run time
 scheduling reconfigurations
 - control driven, data driven

some Historysome History

1st “FPGA”
Patents

1984 2002

XilinxXilinx
major companies

AlteraAltera

SRAM-based
lookup tables

(LUTs)

large
SRAM
blocks FPGA+Multipliers

19971991
1st FPL Conference

Reconfigurable -
Custom

Computing

DEC PRL
PAM Project

SAT Solvers
on FPGAs

Datastructures
on FPGAs

Signal Processing
on FPGAs

1989
TriscendTriscend

FPGA+Processor

Systolic Arrays
Neural Networks

Flexible+Variable Structs.
Dataflow
VLIW,…

RSA Encryption
Speed Record

National SemiconductorNational Semiconductor

FPGA versus MicroprocessorFPGA versus Microprocessor

partly from P. Alfke, Xilinx.

… … and the price per gate goes down …and the price per gate goes down …

data taken partly from Xilinx from P.Alfke, Xilinx.

Time/months

Update 1

Update 2

1 10 20

30
Source: Algotronix Consulting / Xilinx

FPGA versus ASIC Accelerator Card FPGA versus ASIC Accelerator Card

Number of New Users

FPGA accelerator

ASIC accelerator

HW execution

HW compilation

The Speedup ArgumentThe Speedup Argument

>100 speedup

Execution Time

DIMACS Benchmarks, Xilinx FPGAs vs. GRASP Software

Boolean Satisfiability: FPGA vs Pentium

Source: J. Babb PhD thesis, MIT, 2001

Speedup: FPGA vs MIPS ProcessorSpeedup: FPGA vs MIPS Processor

Source: J. Babb PhD thesis, MIT, 2001

Energy Reduction: FPGA vs MIPS CoreEnergy Reduction: FPGA vs MIPS Core

Overview of Custom ComputingOverview of Custom Computing

1. FPGAs: what and why1. FPGAs: what and why
 FPGA, the big picture
 FPGA devices

4. Putting it altogether4. Putting it altogether
 system view
 PAM: a PC-size system
 SONIC: a PCI card

2. Compiling to FPGAs2. Compiling to FPGAs
 architecture generation
 compiler passes

3. Run-time reconfiguration3. Run-time reconfiguration
 generating configurations
 - at compile time, at run time
 scheduling reconfigurations
 - control driven, data driven

A B C D Z

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
 . . .
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

Look-Up Table (LUT): A Universal GateLook-Up Table (LUT): A Universal Gate
• combinatorial logic: stored in Look-Up Tables
• capacity limited by number of inputs not complexity
• LUT delay: independent of logic!

16-bit SRAM

Combinatorial Logic

A
B

C
D

Z

CLB

CLB

CLB

CLB

S witch
Ma trix

Programmable
Interconnect

Xilinx FPGAs: XC4000, Virtex, Virtex IIXilinx FPGAs: XC4000, Virtex, Virtex II

Configurable Logic Block
(CLB)

FPGA Chip

L
U
T

4-LUTs flip-flops

tri-state buffers

carry chain

CLB

Slice 0Slice 0

LUT Carry

LUT Carry D Q
CE

PRE

CLR

D
Q

CE

PRE

CLR

Slice 1Slice 1

LUT Carry

LUT Carry D Q
CE

PRE

CLR

D Q
CE

PRE

CLR

Simplified CLB Structure of Xilinx FPGAsSimplified CLB Structure of Xilinx FPGAs

The VLSI CAD Productivity GapThe VLSI CAD Productivity Gap

1

Lo
g i

c
Tr

a n
si

st
o r

s
p e

r C
h i

p(
K

)

 P

ro
du

ct
i v

i t y
Tr

an
s .

/S
ta

f f
- M

on
th

10

100

1,000

10,000

100,000

1,000,000

10,000,000

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000 Logic
Transistors/ChipTransistor/Staff Month

 58%/Yr. compound
Complexity growth rate

21%/Yr. compound
Productivity growth rate

Source: SEMATECH

19
81

19
83

19
85

1 9
87

19
89

19
91

19
93

19
95

1 9
97

19
99

20
03

20
01

20
0 5

2 0
07

20
0 9

xx x
x x

x

x







Overview of Custom ComputingOverview of Custom Computing

1. FPGAs: what and why1. FPGAs: what and why
 FPGA, the big picture
 FPGA devices

4. Putting it altogether4. Putting it altogether
 system view
 PAM: a PC-size system
 SONIC: a PCI card

2. Compiling to FPGAs2. Compiling to FPGAs
 architecture generation
 compiler passes

3. Run-time reconfiguration3. Run-time reconfiguration
 generating configurations
 - at compile time, at run time
 scheduling reconfigurations
 - control driven, data driven

Programming FPGAs ToolflowProgramming FPGAs Toolflow

C/Matlab/Premiere

Compiler

Machine
code

Run-time
interface

Configuration
information

Fixed processor Custom processor
Custom computing system

The “Compiler” for FPGAsThe “Compiler” for FPGAs

Conventional Compiler Passes

Architecture Generation

Module Generation

Gate Level CAD
FPGA Netlist

loop transformations
bitwidth analysis
pointer analysis
memory management
datastructure transform
architecture selection

Module instantiation
Module connection
Control generation

“instruction set” generation
optimal technology mapping
carry chain generation

FPGA Vendor Tools

FPGA Configuration

Languages for Architecture GenerationLanguages for Architecture Generation

• generate particular instances of a generic
architecture, such as a signal processor,
a stream architecture, a neural network,
a cellular automaton, etc…

• HW Description Languages: VHDL, Verilog

• SW Languages used for Custom Computing
• C/C++, Java, Ruby, etc.

• C++ example: ASC – A Stream Compiler

ASC - A Stream Compiler for FPGAs ASC - A Stream Compiler for FPGAs
Bell Labs

ASC generates Stream Architectures based on C++ input.

MemoryMemoryMemoryMemory

features
distributed registers
distributed delay FIFOs
local memory blocks
external Memory
PAM-Blox II modules

(pre-pipelined)

ASC Example: IDEA EncryptionASC Example: IDEA Encryption
LOOP(8);
 LoopIndex(i);

 word1 = HWmul(word1, key[i*6+0]);
 word2 = word2 + key[i*6+1];
 word3 = word3 + key[i*6+2];
 word4 = HWmul(word4, key[i*6+3]);

 t2 = word1 ^ word3;
 t2 = HWmul(t2, key[i*6+4]);

 t1 = (t2 + (word2 ^ word4));
 t1 = HWmul(t1, key[i*6+5]);
 t2 = (t1 + t2);

 word1 ^= t1;
 word4 ^= t2;

 t2 ^= word2;
 word2 = word3 ^ t1;
 word3 = t2;
LOOP_END();

1

10

100

1000

Processors XCV300 XCV600 XCV2000

Mbits/s

Performance

ratio
ioncommunicat
ncomputatio high

*
“unroll once” “unroll 8x”

OPTIMIZE=REDUNDANT;

Overview of Custom ComputingOverview of Custom Computing

1. FPGAs: what and why1. FPGAs: what and why
 FPGA, the big picture
 FPGA devices
 programming FPGAs
 - module generation

4. Putting it altogether4. Putting it altogether
 system view
 PAM: a PC-size system
 SONIC: a PCI card

2. Compiling to FPGAs2. Compiling to FPGAs
 architecture generation
 compiler passes

3. Run-time reconfiguration3. Run-time reconfiguration
 generating configurations
 - at compile time, at run time
 scheduling reconfigurations
 - control driven, data driven

The “Compiler” for FPGAsThe “Compiler” for FPGAs

Conventional Compiler Passes

Architecture Generation

Module Generation

Gate Level CAD
FPGA Netlist

loop transformations
bitwidth analysis
pointer analysis
memory management
datastructure transform
architecture selection

Module instantiation
Module connection
Control generation

“instruction set” generation
optimal technology mapping
carry chain generation

FPGA Vendor Tools

FPGA Configuration

Bitwidth Analysis (Type Size Inference)Bitwidth Analysis (Type Size Inference)

• for programs written in a
 high-level language

• minimum bitwidth required for
• each variable at every

static location of the program
• each static operation

of the program
• reduces memory bandwidth

dependency, MBD
(slide 15, above)

int a;
int b;
char c;

a = c;

a = a / 2;

b = a >> 4;

b = a + b;

8 bits

7 bits

3 bits

8 bits

7 bits

8 bits 7 bits

HAGAR: Hardware Graph AcceleratorsHAGAR: Hardware Graph Accelerators



















0010
1000
0100
0110

3

2

1

0

3210

v
v
v
v

vvvv

operations: insert, delete, reachability, …
reachability speedup over PC: 10 to 1000 for 1K nodes

Row 3

Row 2

Row 1

Row 0

Col. 0 Col. 1 Col. 2 Col. 3

Flip-flop

.
. .

. .
.

..

.
.

...
..

.
...

.. . .
.

.

.
.

.
. .
..

11

11

1111

11

Tristate
Buffer

Memory Latency Dependent, e.g. data structures, pointers
  implement data-structure + algorithm in hardware

from Lorenz Huelsbergen

1000 Vertices

100 Vertices

high inter-chip delay

low inter-chip delay

Speedup of ReachabilitySpeedup of Reachability
Speedup over Software
(simulation results)

Overview of Custom ComputingOverview of Custom Computing

1. FPGAs: what and why1. FPGAs: what and why
 FPGA, the big picture
 FPGA devices
 programming FPGAs
 - module generation

4. Putting it altogether4. Putting it altogether
 system view
 PAM: a PC-size system
 SONIC: a PCI card

2. Compiling to FPGAs2. Compiling to FPGAs
 architecture generation
 compiler passes

3. Run-time reconfiguration3. Run-time reconfiguration
 generating configurations
 - at compile time, at run time
 scheduling reconfigurations
 - control driven, data driven

Run-time Reconfiguration Run-time Reconfiguration

 FPGAs are reconfigurable within milliseconds!

1. generating configurations
• at compile time
• at run time

2. scheduling reconfigurations
• at compile time - control driven
• at run time – data driven

Generating & Scheduling ReconfigurationsGenerating & Scheduling Reconfigurations
Application

source or executable

Phase 1

Phase 2

FPGA Configurations

C1 C2

Control driven reconfiguration from phase 1 to phase 2.
Data driven reconfiguration from C1 to C2
=> insert reconfiguration strategy (algorithm) into application

Generating & Scheduling Reconfigurations Generating & Scheduling Reconfigurations

 @compile time

Viterbi decoder:
adaptive error

correction

@run time

boolean satisfiability

 media processing

sc
he

du
lin

g
re

co
nf

ig
ur

at
io

ns control
 driven

generating configurations

data
 driven

network intrusion
detection

image processing

Rijndael AES
encryption

Media Processing ExampleMedia Processing Example

• shape-adaptive template matching (SATM)
• MPEG4, MPEG7: find arbitrarily shaped object in video

• template contains object of interest
• Sum of Absolute Distances of template and video

• adapt design to template and search frame

SATM: FPGA versus PCSATM: FPGA versus PC

• HDTV frames: 1920 by 1080 pixels
• for 300 HDTV frames, use PC time as reference
 TPC : execution time of PC with 1.4GHz Pentium 4
 SD : speedup of dynamic design
 SPD : speedup of partially dynamic design
 SS : speedup of static design

• dynamic design superior when:
• a large number of consecutive frames
• templates do not change often
• small templates

 T_D : time for dynamic
 design
 T_S : time for static design
 T_PD : time for partially
 dynamic design

SATM: Performance ResultsSATM: Performance Results

dynamicpartially-
dynamic

static

Overview of Custom ComputingOverview of Custom Computing

1. FPGAs: what and why1. FPGAs: what and why
 FPGA, the big picture
 FPGA devices
 programming FPGAs
 - module generation

4. Putting it altogether4. Putting it altogether
 system view
 PAM: a PC-size system
 SONIC: a PCI card

3. Run-time reconfiguration3. Run-time reconfiguration
 generating configurations
 - at compile time, at run time
 scheduling reconfigurations
 - control driven, data driven

2. Compiling to FPGAs2. Compiling to FPGAs
 architecture generation
 compiler passes
 - loop transformations
 - bitwidth analysis

System View of Custom AcceleratorsSystem View of Custom Accelerators

Microprocessor

FPGA

Memory

Interconnect

from the IBM websiteIntel Pentium

 “Custom Accelerator”Local Area Network
PCI Bus
PC Card/Cardbus
Memory Bus / DIMM
Custom Interconnect
On-chip Interconnect

Xilinx Virtex-II ProXilinx Virtex-II Pro

Source: Xilinx

Case Studies Case Studies

1 PAM project at DIGITAL PRL (Compaq)
• various applications on multi-FPGA platform

2 SONIC project at Imperial College and Sony
• broadcast-quality video processing PCI card

Case Study 1: The PAM Project Case Study 1: The PAM Project

 PProgrammable rogrammable AActive ctive MMemories emories (source: Mark Shand)(source: Mark Shand)

4 Platforms:
 - Perle-0 (1989)

50k gate reconfigurable VME board
 - DECPeRLe-1 (1992)

200k gates, 20ms turnaround
 - TURBOchannel Pamette (1994)
 - PCI Pamette (1996)
 PCI card with 40K - 112K gates

People:
 Jean Vuillemin
 Patrice Bertin
 Didier Roncin
 Herve Touati

Philippe Boucard
Harry Printz
Mark Shand

Applications:
 Long Int. Multiplication
 RSA Cryptography
 Dynamic Programming
 Laplace Heat Equation
 Viterbi Decoder
 Sound Synthesis
 Neural Networks

Goals:
 Maximum performance
 Rapid turnaround
 Exploring how to build and program PAM
 Exploring the application space
 (Non-goals: high-level synthesis,
 platform independence, improving FPGAs)

Stereo Vision
Hough Transform
High Energy Physics
Image Aquisition
Wireless LAN
 testbed

All applications are implemented by hand at the gate level using PamDC.

DECPeRLe-1DECPeRLe-1

Case Study 2: SONICCase Study 2: SONIC

professional video processing professional video processing
at SONY and Imperial Collegeat SONY and Imperial College

PIPE 1 PIPE 2
PIPE
N-2

PIPE
N-1 PIPE N

Host Bus

PIPEFlow B
PIPEFlow A

External
Video
Buses

LBC
(Local Bus
Controller)

SONIC architectureSONIC architecture

PIPE = Plug In Processing Element

PIPE 1 PIPE 2
PIPE
N-2

PIPE
N-1 PIPE N

Host Bus

PIPEFlow B
PIPEFlow A

External
Video
Buses

LBC
(Local Bus
Controller)PIPE Router

(PR)

PIPE Engine
(PE)

PIPE
Memory

(PM)

PIPEFlow
Left

PIPEFlow
Right

PIPEFlow
A

PIPEFlow
B

PIPE Bus

PIPEFlow
In

PIPEFlow
Out

local bus
global (flow) bus

 PIPE ArchitecturePIPE Architecture

PR provides abstraction
for plug-in builder

LBC

PE

PR

PM

PE

PR
PM

PE

PR

PM

PE

PR

PM

Host BUS

SONIC Processing an ImageSONIC Processing an Image

Image Transfer In

Processing

Image Transfer Out

Configuration of Plug-In

Image Transfer In

Processing

Image Transfer Out

PE

PR PR
PM PM

PE

Configuration of Plug-In

Plug-In

PE PEPM
PR PR

PM

SONIC with Multiple Plug-insSONIC with Multiple Plug-ins

PE

PR
PM

LBC

PE

PR

PM

PE

PR

PM

PE

PR

PM

PE

PR

PM

PE

PR

PM

Host BUS

Plug-In

PE

PR

PM

Plug-In
2

Plug-In
3

Plug-In
1 1

SONIC versus PentiumSONIC versus Pentium

0

5
10

15

20

25
30

35

40

2-D FIR 3x3 FIR 2-D
Transform

Colour
Corrector

3x3 FIR +
Colour

Corrector

Task

S
pe

ed
-U

p 1 PIPE
2 PIPEs
4 PIPEs
6 PIPEs

Speedup Compared with an MMX Pentium II 300Mhz

Current Generation: UltraSONICCurrent Generation: UltraSONIC

• PE, PR on one FPGA
• 8MB SRAM on PIPE
• up to 16 PIPEs
• 64-bit, 66MHz PCI
• real-time image registration

Pointers to Conferences and JournalsPointers to Conferences and Journals

FPGA ConferencesFPGA Conferences
 FPGA Conference
 FCCM
 FPL
 FPT
 ERSA
Hardware Design
 ICCAD
 DAC
Computer Architecture
 ISCA, ISC,
 HPCA, ASPLOS,
 MICRO

JournalsJournals
 IEEE Transactions on Computers

 IEEE Transactions on VLSI

 IEEE Transactions on CAD

 Kluwer Journal on VLSI and Signal
 Processing

 ACM Transactions on Architecture
 and Code Optimization

