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ObjectivesObjectives

• What is Custom Computing, and Why

• Compilation issues

• Run-time issues

• Systems: putting it all together



Overview of Custom ComputingOverview of Custom Computing

1. FPGAs: what and why1. FPGAs: what and why
   FPGA, the big picture 
   FPGA devices
   

4. Putting it altogether4. Putting it altogether
 system view 
 PAM: a PC-size system
 SONIC: a PCI card
 
   

2. Compiling to FPGAs2. Compiling to FPGAs
   architecture generation
   compiler passes   
     

3. Run-time reconfiguration3. Run-time reconfiguration
  generating configurations
   - at compile time, at run time
  scheduling reconfigurations
   - control driven, data driven
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FPGA versus MicroprocessorFPGA versus Microprocessor  

partly from P. Alfke, Xilinx. 



… … and the price per gate goes down …and the price per gate goes down …  

data taken partly from Xilinx from P.Alfke, Xilinx. 
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FPGA versus ASIC Accelerator Card FPGA versus ASIC Accelerator Card 

Number of New Users

FPGA accelerator

ASIC accelerator



HW execution

HW compilation

The Speedup ArgumentThe Speedup Argument

>100 speedup

Execution Time

DIMACS Benchmarks, Xilinx FPGAs vs. GRASP Software 

Boolean Satisfiability: FPGA vs Pentium



Source: J. Babb PhD thesis, MIT, 2001

Speedup: FPGA vs MIPS ProcessorSpeedup: FPGA vs MIPS Processor



Source: J. Babb PhD thesis, MIT, 2001

Energy Reduction: FPGA vs MIPS CoreEnergy Reduction: FPGA vs MIPS Core
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Look-Up Table (LUT): A Universal GateLook-Up Table (LUT): A Universal Gate
• combinatorial logic: stored in Look-Up Tables
• capacity limited by number of inputs not complexity
• LUT delay: independent of logic!

16-bit SRAM

Combinatorial Logic
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The VLSI CAD Productivity GapThe VLSI CAD Productivity Gap
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Programming FPGAs ToolflowProgramming FPGAs Toolflow

C/Matlab/Premiere

Compiler

Machine
code

Run-time
interface

Configuration
information

Fixed processor Custom processor
Custom computing system



The “Compiler” for FPGAsThe “Compiler” for FPGAs

Conventional Compiler Passes

Architecture Generation

Module Generation

Gate Level CAD
FPGA Netlist

loop transformations
bitwidth analysis
pointer analysis
memory management
datastructure transform
architecture selection

Module instantiation
Module connection
Control generation

“instruction set” generation
optimal technology mapping
carry chain generation

FPGA Vendor Tools

FPGA Configuration



Languages for Architecture GenerationLanguages for Architecture Generation

• generate particular instances of a generic 
architecture, such as a signal processor,       
a stream architecture, a neural network,        
a cellular automaton, etc…

• HW Description Languages: VHDL, Verilog

• SW Languages used for Custom Computing
• C/C++, Java, Ruby, etc.  

• C++ example:   ASC – A Stream Compiler      
               



ASC - A Stream Compiler for FPGAs ASC - A Stream Compiler for FPGAs 
Bell Labs 

ASC generates Stream Architectures based on C++ input.

MemoryMemoryMemoryMemory

features
distributed registers
distributed delay FIFOs
local memory blocks
external Memory
PAM-Blox II modules

(pre-pipelined)



ASC Example: IDEA EncryptionASC Example: IDEA Encryption
LOOP(8);  
  LoopIndex(i);

  word1 = HWmul(word1, key[i*6+0]);
  word2 = word2 + key[i*6+1];
  word3 = word3 + key[i*6+2];
  word4 = HWmul(word4, key[i*6+3]);

  t2 = word1 ^ word3;
  t2 = HWmul(t2, key[i*6+4]);

  t1 = (t2 + (word2 ^ word4));
  t1 = HWmul(t1, key[i*6+5]);
  t2 = (t1 + t2);

  word1 ^= t1;
  word4 ^= t2;

  t2 ^= word2;
  word2 = word3 ^ t1;
  word3 = t2;
LOOP_END();

1
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1000

Processors XCV300 XCV600 XCV2000
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ratio  
ioncommunicat
ncomputatio  high

*
“unroll once” “unroll 8x”

OPTIMIZE=REDUNDANT;
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Bitwidth Analysis (Type Size Inference)Bitwidth Analysis (Type Size Inference)

• for programs written in a  
  high-level language 

• minimum bitwidth required for 
• each variable at every 

static location of the program 
• each static operation  

of the program
• reduces memory bandwidth 

dependency, MBD         
(slide 15, above)

int    a;
int    b;
char   c;

a  =  c;

a  =  a  /  2;
     

b  =  a  >>  4;

b  =  a  +  b; 

8 bits

7 bits

3 bits

8 bits

7 bits

8 bits 7 bits



HAGAR: Hardware Graph AcceleratorsHAGAR: Hardware Graph Accelerators
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from Lorenz Huelsbergen

1000 Vertices

100 Vertices

high inter-chip delay

low inter-chip delay

Speedup of ReachabilitySpeedup of Reachability
Speedup over Software
(simulation results)
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Run-time Reconfiguration Run-time Reconfiguration 

   FPGAs are reconfigurable within milliseconds!

1.  generating configurations
• at compile time
• at run time

2.  scheduling reconfigurations
• at compile time - control driven
• at run time – data driven



Generating & Scheduling ReconfigurationsGenerating & Scheduling Reconfigurations
Application

source or executable

Phase 1

Phase 2

FPGA Configurations

C1 C2

Control driven reconfiguration from phase 1 to phase 2.
Data driven reconfiguration from C1 to C2
=> insert reconfiguration strategy (algorithm) into application 



Generating & Scheduling Reconfigurations  Generating & Scheduling Reconfigurations  

    @compile time

Viterbi decoder:
adaptive error 

correction

@run time

boolean satisfiability

  media processing
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image processing
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Media Processing ExampleMedia Processing Example

• shape-adaptive template matching (SATM)
• MPEG4, MPEG7: find arbitrarily shaped object in video

• template contains object of interest
• Sum of Absolute Distances of template and video 

 
• adapt design to template and search frame 

 
      



SATM: FPGA versus PCSATM: FPGA versus PC
  
• HDTV frames: 1920 by 1080 pixels
• for 300 HDTV frames, use PC time as reference 
 TPC  : execution time of PC with 1.4GHz Pentium 4
 SD   : speedup of dynamic design
 SPD : speedup of partially dynamic design 
 SS    : speedup of static design



• dynamic design superior when:
• a large number of consecutive frames
• templates do not change often 
• small templates  

 T_D : time for dynamic
          design
 T_S : time for static design
 T_PD : time for partially        
             dynamic design 
 
  

SATM: Performance ResultsSATM: Performance Results

dynamicpartially-
dynamic

static
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System View of Custom AcceleratorsSystem View of Custom Accelerators

Microprocessor

FPGA

Memory

Interconnect

from the IBM websiteIntel Pentium 

  “Custom Accelerator”Local Area Network
PCI Bus
PC Card/Cardbus
Memory Bus / DIMM
Custom Interconnect
On-chip Interconnect



Xilinx Virtex-II ProXilinx Virtex-II Pro

Source: Xilinx



Case Studies Case Studies 

1 PAM project at DIGITAL PRL (Compaq)
• various applications on multi-FPGA platform

2 SONIC project at Imperial College and Sony
• broadcast-quality video processing PCI card 



Case Study 1: The PAM Project Case Study 1: The PAM Project 
  

  PProgrammable rogrammable AActive ctive MMemories emories (source: Mark Shand)(source: Mark Shand)

4 Platforms:
   - Perle-0 (1989)

50k gate reconfigurable VME board
   - DECPeRLe-1 (1992)

200k gates, 20ms turnaround
   - TURBOchannel Pamette (1994)
   - PCI Pamette (1996)
         PCI card with 40K - 112K gates

People:
   Jean Vuillemin
   Patrice Bertin
   Didier Roncin
   Herve Touati
   

Philippe Boucard
Harry Printz
Mark Shand

Applications:
   Long Int. Multiplication
   RSA Cryptography
   Dynamic Programming
   Laplace Heat Equation
   Viterbi Decoder
   Sound Synthesis
   Neural Networks

Goals:
   Maximum performance 
   Rapid turnaround
   Exploring how to build and program PAM
   Exploring the application space
   (Non-goals: high-level synthesis,
    platform independence, improving FPGAs)

Stereo Vision
Hough Transform
High Energy Physics
Image Aquisition
Wireless LAN 
   testbed

All applications are implemented by hand at the gate level using PamDC.



DECPeRLe-1DECPeRLe-1



Case Study 2: SONICCase Study 2: SONIC  

professional video processing professional video processing 
at SONY and Imperial Collegeat SONY and Imperial College
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SONIC architectureSONIC architecture

PIPE = Plug In Processing Element



PIPE 1 PIPE 2
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              PIPE ArchitecturePIPE Architecture

PR provides abstraction
for plug-in builder 
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SONIC with Multiple Plug-insSONIC with Multiple Plug-ins
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SONIC versus PentiumSONIC versus Pentium
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Current Generation: UltraSONICCurrent Generation: UltraSONIC

• PE, PR on one FPGA
• 8MB SRAM on PIPE
• up to 16 PIPEs
• 64-bit, 66MHz PCI
• real-time image registration



Pointers to Conferences and JournalsPointers to Conferences and Journals

FPGA ConferencesFPGA Conferences
   FPGA Conference
   FCCM
   FPL
   FPT
   ERSA
Hardware Design
   ICCAD
   DAC
Computer Architecture
   ISCA, ISC,
   HPCA, ASPLOS,
   MICRO
   

JournalsJournals
  IEEE Transactions on Computers

  IEEE Transactions on VLSI

  IEEE Transactions on CAD

  Kluwer Journal on VLSI and Signal
                                        Processing

  ACM Transactions on Architecture 
           and Code Optimization
  
   


