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Abstract

Anisotropic mesh adaptation is a powerful way to directly minimise the

computational cost of mesh based simulation. It is particularly important

for multi-scale problems where the required number of floating-point oper-

ations can be reduced by orders of magnitude relative to more traditional

static mesh approaches. Increasingly, finite element/volume codes are be-

ing optimised for modern multicore architectures. Inter-node parallelism for

mesh adaptivity has been successfully implemented by a number of groups

using domain decomposition methods. However, thread-level parallelism

using programming models such as OpenMP is significantly more challeng-

ing because the underlying data structures are extensively modified during

mesh adaptation and a greater degree of parallelism must be realised while

keeping the code race-free.

In this thesis we describe a new thread-parallel implementation of four

anisotropic mesh adaptation algorithms, namely edge coarsening, element

refinement, edge swapping and vertex smoothing. For each of the mesh op-

timisation phases we describe how safe parallel execution is guaranteed by

processing workitems in batches of independent sets and using a deferred-

operations strategy to update the mesh data structures in parallel without

data contention. Scalable execution is further assisted by creating worklists

using atomic operations, which provides a synchronisation-free alternative

to reduction-based worklist algorithms. Additionally, we compare graph

colouring methods for the creation of independent sets and present an im-

proved version which can run up to 50% faster than existing techniques.

Finally, we describe some early work on an interrupt-driven work-sharing

for-loop scheduler which is shown to perform better than existing work-

stealing schedulers.

Combining all aforementioned novel techniques, which are generally appli-

cable to other irregular problems, we show that despite the complex nature

of mesh adaptation and inherent load imbalances, we achive a parallel effi-
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ciency of 60% on an 8-core Intel R©Xeon R© Sandy Bridge and 40% using 16

cores on a dual-socket Intel R©Xeon R© Sandy Bridge ccNUMA system.
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1 Introduction

1.1 Thesis Statement

This thesis argues that algorithms for irregular data with mutable depen-

dencies can be parallelised efficiently on shared-memory systems. By de-

ferring data write-back to specific points in the execution, carefully using

atomic operations on parallel worklists and executing parts of an algorithm

speculatively, it is possible to reduce the amount of thread synchronisation

and make the parallel algorithm scalable, retaining high levels of parallel

efficiency on multicore and manycore platforms.

1.2 Motivation and Objectives

Finite element (FEM) and finite volume methods (FVM) are commonly used

in the numerical solution of partial differential equations (PDEs). Unstruc-

tured meshes, where the spatial domain has been discretised into simplices

(i.e. triangles in 2D, tetrahedra in 3D), are of particular interest in applica-

tions where the geometric domain is complex and structured meshes are not

practical. In addition, simplices are well suited to smoothinly adjusting the

resolution of the mesh throughout the domain, allowing for local refinement

of the mesh without hanging nodes.

Computational mesh resolution is often the limiting factor in simulation

accuracy. Indeed, being able to accurately resolve physical processes at

the small scale, coupled with larger scale dynamics, is key to improving

the fidelity of numerical models across a wide range of applications, from

earth system components used in climate prediction to the simulation of car-

diac electrophysiology [90, 105]. Since many of these applications include a

strong requirement to conform to complex geometries or to resolve a multi-

scale solution, the numerical methods used to model them often favour the

use of unstructured meshes and finite element or finite volume discretisation
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methods over structured grid alternatives. However, this flexibility intro-

duces complications of its own, such as the management of mesh quality

and additional computational overheads arising from indirect addressing.

A difficulty with mesh based modelling is that the mesh is generated be-

fore the solution is known, however, the local error in the solution is related

to the local mesh resolution. Resolution in time and space are often the

limiting factors in achieving accurate simulations for real world problems

across a wide range of applications in science and engineering. The brute

force strategy is typical, whereby a user varies the resolution at the mesh

generation phase and reruns the simulation several times until the required

accuracy is achieved. This is successful up to a point when a numerical

method is relatively straightforward to scale up on parallel computers, for

example finite difference or lattice Boltzmann methods. However, this ap-

proach is inefficient, often lacks rigour and may be completely impracti-

cal for multiscale time-dependent problems where superfluous computation

may well be the dominant cost of the simulation. In practice, this means

simulation accuracy is usually determined by the available computational

resources and an acceptable time to solution rather than the actual needs

of the problem.

Anisotropic mesh adaptation methods provide an important means to

minimise superfluous computation associated with over resolving the solu-

tion while still achieving the required accuracy, e.g. [83, 93, 17, 4, 89, 71]. In

order to use mesh adaptation within a simulation, the application code re-

quires a method to estimate the local solution error. Given an error estimate

it is then possible to compute a solution to a specified error tolerance while

using the minimum resolution everywhere in the domain and maintaining

element quality constraints.

Parallel computing - in order to make use of larger compute resources

- provides an obvious source of further improvements in accuracy. Previ-

ous work has described how adaptive mesh methods can be implemented

in parallel in the context of distributed memory parallel computers using

MPI ([71, 40, 28, 6]). Therefore, both adaptive mesh methods and paral-

lel computing can be combined to achieve scalable and efficient high fidelity

simulations. However, this comes at the cost of further overheads, including

the need to manage the distribution of the mesh over the available compute

resources and the synchronisation of halo regions.
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Over the past ten years there has been a trend towards an increasing

number of cores per node and reduced amount of memory per core in the

world’s most powerful supercomputers. For example, each node of Fujitsu’s

“K computer” consists of an 8-core SPARC64
TM

VIIIfx CPU [44, 114] and

the SPARC64
TM

IXfx-based nodes in Fujitsu’s PRIMEHPC FX10 machines

have 16 cores per CPU [43]. Similarly, Cray XE6
TM

“Blue Waters” nodes are

made up of two 12-core AMD Opteron
TM

6100 processors (24 cores per node)

[57, 60], IBM R©’s Blue Gene R©/Q nodes each have 16 cores for computation

[53], Intel R©’s latest Haswell-based CPUs contain up to 18 cores [26] and its

MIC co-processors have over 60 cores [59, 97, 27]. It is assumed that the

nodes of a future exascale supercomputer will each contain thousands or

even tens of thousands of cores [33].

For this reason it is important that algorithms are developed with very

high levels of parallelism. On such architectures, a popular parallel pro-

gramming paradigm is to use a thread-based parallel API, such as OpenMP

[29], to exploit shared memory within a shared memory node and a message

passing API such as MPI [110], for interprocess communication. When the

computational intensity is sufficiently high, a third level of parallelisation

may be implemented via SIMD instructions, such as SSE or AVX, at the

core level.

OpenMP itself is evolving to keep pace with these trends. Version 3.0

[86] moved beyond parallel loops and introduced the concept of generalised

tasks with complex and dynamic control flows to support irregular paral-

lelism. In version 3.1 [87] the OpenMP Architecture Review Board extended

atomics to support capture and write operations, added min and max re-

duction operators, refined the tasking model with final and mergeable

clauses and provided initial support for thread binding. In its latest ver-

sion, 4.0 [88], the OpenMP standard has adopted support for user-defined

reductions, accelerator offloading, SIMD constructs, stronger thread-core

affinity and sequentially consistent atomics. Plans for future versions in-

clude support for memory affinity, transactional memory and thread-level

speculation, additional synchronisation mechanisms, locality optimisations

and runtime decisions about scheduling to support dynamic resource allo-

cation and load balancing [34, 16].

Many algorithms are inherently sequential; they fall into the class of P-

complete problems. Examples include the Circuit Value Problem, Lexico-
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graphically First Depth-First Search Ordering and Context-Free Grammar

Membership. Other algorithms are hard to parallelise effectively, e.g. the

Greatest Common Divisor of two numbers. A thorough analysis of such

algorithms can be found in [50]. For other classes of algorithms, however,

while it can be difficult to achieve a sufficiently high level of parallelism at

the algorithm level, there are many opportunities to improve performance

and scalability by reducing communication needs, memory consumption,

resource sharing, improved load balance and other algorithmic changes [96].

For the class of graph algorithms, which is the main topic of this thesis,

there are many factors which limit performance and scalability [76]:

• The irregular nature of graphs leads to unpredictable memory access

patterns, rendering prefetching techniques inapplicable. This makes

memory accesses costly.

• Another result of graphs’ irregularity is poor data locality. Modern

architectures are equipped with fast caches and rely on spatial and

temporal data locality to achieve high performance. Therefore, even

a serial graph algorithm can perform poorly due to little data reuse.

• Even worse, graph kernels are mainly memory-bound rather than

compute-bound and so the execution is dominated by data access

latency. In fact, there are cases where there is no computation on the

data at all, e.g. many graph colouring algorithms, therefore nothing

can be done to hide that latency.

• Extracting parallelism can be hard, since many algorithms are data-

driven, meaning that the exact operations to be performed on a vertex

are determined by that particular vertex and are not known a priori.

This can easily lead to imbalances in workload when using static par-

titioning or coarse-grained parallelism.

• When parallelism is fine-grained, threads need to synchronise fre-

quently, so sequential parts appear in between parallel regions inside

a procedure.

For the aforementioned reasons, adaptive mesh algorithms sound hard to

parallelise effectively on modern shared-memory architectures. In this the-

sis we take a fresh look at anisotropic adaptive mesh methods (also known
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as mesh optimisation methods) in 2D and describe new scalable parallel

techniques suitable for modern multicore and manycore architectures. This

work builds upon: the adaptive procedure described by [71] which uses a

combination of coarsening, refinement and swapping to adapt the mesh;

the optimisation-based vertex smoothing algorithm by [37] to fine-tune ele-

ment quality; the general parallel framework proposed by [40] which ensures

thread-safe execution.

1.3 Application

The work presented in this thesis forms the basis of the open source code

PRAgMaTIc1 (Parallel anisotRopic Adaptive Mesh ToolkIt), which has

been integrated into the open source computational fluid dynamics software

Fluidity2.

1.4 Contributions

In this research we examine the anisotropic adaptive mesh methods in 2D

as a case study to develop new scalable thread-parallel algorithms suitable

for modern multicore architectures. We show that despite the irregular

data access patterns, irregular workload and need to rewrite the mesh data

structures, good parallel efficiency can be achieved. The key contributions

are:

• We present scalable parallel techniques which form an algorithmic

framework for problems with mutable irregular data. These tech-

niques include (a) vertex colouring and independent sets to extract

parallelism, (b) design choices regarding the representation of irreg-

ular data which lead to as few data structures as possible, (c) the

deferred updates strategy, according to which updates to shared data

structures are committed at selected points throughout the execution

of an algorithm in order to avoid data contention and races and (d)

handling of parallel worklists with the assistance of atomic-capture op-

erations. This irregular compute methodology is described in Chapter

4.
1https://github.com/ggorman/pragmatic
2http://fluidityproject.github.io/
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• We discuss previous work on graph colouring and demonstrate an im-

proved parallel greedy colouring algorithm for shared-memory envi-

ronments which outperforms its predecessors. There are two sources

of speedup: (a) reduced number of thread barriers and (b) higher

thread divergence throughout the execution. This case provides ev-

idence that thread divergence in speculative parallel execution can

contribute toward minimising the need for rolling-back and, as a con-

sequence, the algorithm runs to completion in less time. This work is

covered in Chapter 5.

• We show how the aforementioned parallel techniques are applied to

adaptive mesh algorithms, leading to the creation of PRAgMaTIc,

the first (to the best of our knowledge) threaded implementation of

anisotropic mesh adaptation. We present a systematic performance

evaluation that (a) shows the potential of a parallel efficiency of 60%

on an 8-core UMA architecture and 40% on a 16-core ccNUMA archi-

tecture and (b) characterises what the performance depends on and

where the bottlenecks are. This is the focus of Chapter 6.

• We present our early work on an interrupt-driven work-sharing sched-

uler (IDWS) for OpenMP which is shown to be a better all-around

option compared with current built-in for-loop schedulers. IDWS per-

forms better than classic work stealing thanks to two key features not

found in other schedulers: (a) idle threads use a heuristic method for

finding the most loaded worker to request work from and (b) the re-

quest is sent using hardware interrupts so as to get a response from

the worker as promptly as possible. IDWS is described in Chapter 7.

1.5 Dissemination

The work contained within this thesis has been disseminated to a wider

community through publications, presentations, and the release of software

under open-source licences. The list of publications is as follows:

[101] Georgios Rokos, Gerard Gorman, and Paul H.J. Kelly. Accel-

erating anisotropic mesh adaptivity on nvidias cuda using

texture interpolation. In Emmanuel Jeannot, Raymond Namyst,
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and Jean Roman, editors, Euro-Par 2011 Parallel Processing, volume

6853 of Lecture Notes in Computer Science, pages 387398. Springer

Berlin Heidelberg, 2011. This paper presents my seminal work on

mesh adaptivity by studying the Laplacian vertex smoothing algo-

rithm and parallelising it for CUDA.

[49] GJ Gorman, J Southern, PE Farrell, MD Piggott, G Rokos, and

PHJ Kelly. Hybrid OpenMP/MPI anisotropic mesh smooth-

ing. Procedia Computer Science, 9:15131522, 2012. This paper is

the continuation of [101], giving insight into the first algorithm im-

plemented in PRAgMaTIc, a hybrid OpenMP/MPI version of vertex

smoothing. The OpenMP part was implemented by my co-authors,

based on my CUDA code from the previous publication.

[100] Georgios Rokos and Gerard Gorman. PRAgMaTIc - Parallel

Anisotropic Adaptive Mesh Toolkit. In Rainer Keller, David

Kramer, and Jan-Philipp Weiss, editors, Facing the Multicore Chal-

lenge III, volume 7686 of Lecture Notes in Computer Science, pages

143144. Springer Berlin Heidelberg, 2013. Abstract and poster de-

scribing my early work on all four adaptive algorithms.

[48] Gerard J. Gorman, Georgios Rokos, James Southern, and Paul H. J.

Kelly. Thread-parallel anisotropic mesh adaptation. Accepted

for publication in Proceedings of the 4th Tetrahedron Workshop on

Grid Generation for Numerical Computations, 2014. This paper en-

compasses my work described in Chapters 4 and 6, essentially pre-

senting the final, optimised and scalable version of the 2D branch of

PRAgMaTIc.

Progress on PRAgMaTIc has been presented on the following occasions:

• Poster at the CARE (Computation for Advanced Reactor Engineering)

meeting, 23 January 2014.

• Talk at Recent Advances in Parallel Meshing Algorithms minisympo-

sium, SIAM Conference on Parallel Processing and Scientific Com-

puting, 18-21 February 2014, Portland, OR, USA.

Papers on the work presented in Chapters 5 and 7 are currently under

preparation.
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1.6 Thesis Outline

The rest of this report is laid out as follows: Chapter 2 covers background

theory behind anisotropic PDEs and the optimisation algorithms which con-

trol solution error and improve mesh element quality. Chapter 3 surveys

related work in parallel mesh adaptivity and similar morph algorithms. Be-

cause this multidisciplinary work covers a number of specialist areas, spe-

cific literature review on other topics is presented in the relevant chapters.

In Chapter 4 we explore design choices and generic scalable parallel tech-

niques which aid in the parallelisation of mesh adaptivity kernels. Chapter

5 reviews previous work on parallel graph colouring methods, describes an

improved algorithm and shows how speculative execution can improve mul-

tithreaded performance. Chapter 6 demonstrates how the techniques from

Chapters 4 and 5 are combined with the adaptive kernels from Chapter 2 to

create a scalable shared-memory mesh adaptivity framework. In Chapter 7

we propose an interrupt-driven for-loop scheduler and present some prelim-

inary results from using it both in synthetic benchmarks and in adaptivity

kernels. Finally, we conclude the thesis in Chapter 8.
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2 Background Theory

In this chapter we will give an overview of anisotropic mesh adaptation. In

particular, we focus on the element quality as defined by an error metric

and the anisotropic adaptation kernels which iteratively improve the local

mesh quality as measured by the worst local element.

2.1 PDEs and the Finite Element Method

The Finite Element Method (FEM) is a common numerical approach for

the solution of PDEs, in which the problem space is discretised into smaller

elements, usually of triangular (in 2D) or tetrahedral (in 3D) shape. Many

kinds of elements can be used, e.g. quadrilaterals and hexes, but we are

focusing on simplices as there are robust mesh generation methods for com-

plex geometries using simplices and also mesh adaptivity has been studied

extensively on simplicial meshes. The Finite Element Method uses parts of

the work presented in this thesis but covering it is out of scope. An excellent

reference for finite element analysis can be found in [116].

Mesh quality impacts discretisation error. A low quality mesh affects

both convergence speed and solution accuracy [37]. Error estimates on the

PDE solution help evaluate a quality functional [111] and determine the low-

quality elements, which a mesh-improving algorithm tries to adapt towards

the correct solution.

Finite element and finite volume methods on unstructured meshes of-

fer significant advantages for many real world applications. For example,

meshes comprised of simplices that conform to complex geometrical bound-

aries can now be generated with relative ease. In addition, simplices are

well suited to varying the resolution of the mesh throughout the domain,

allowing for local coarsening and refinement of the mesh without hanging

nodes. It is common for these codes to be memory bound because of the in-

direct addressing and the subsequent irregular memory access patterns that
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the unstructured data structures introduce [93]. However, discontinuous

Galerkin and high-order finite element methods are becoming increasingly

popular because their numerical properties and associated compact data

structures allow data to be easily streamed on multi-core architectures.

2.2 Error Control

Solution discretisation errors are closely related to the size and the shape

of the elements. However, in general meshes are generated using a priori

information about the problem under consideration when the solution error

estimates are not yet available. This may be problematic because:

• Solution errors may be unacceptably high.

• Parts of the solution may be over-resolved, thereby incurring unnec-

essary computational expense.

A solution to this is to compute appropriate local error estimates a poste-

riori and use this information to compute a field on the mesh which specifies

the local mesh resolution requirement. In the most general case the desired

resolution is specified as a metric tensor field where the eigenvalues encode

the local resolution in the direction of the associated eigenvector. Use of

a metric tensor field consequently accommodates for anisotropic problems,

i.e. resolution requirements can be specified anisotropically; for a review of

the procedure see [41]. Size gradation control can be applied to this metric

tensor field to ensure that there are not abrupt changes in element size [5].

A posteriori error estimation either for computational error control using

goal-oriented functionals or classic error control in global energy norms is a

field in which research is taking place very actively. This topic goes beyond

the scope of this thesis; the reader is referred to the literature (e.g. [104,

9, 67] and the publications cited therein) for an extensive coverage of error

control.

2.3 Anisotropic Problems

In many applications the resolution requirement is anisotropic; e.g. higher

resolution is required perpendicular to a shock front than along the shock.

29



A problem is characterised as anisotropic if its solution exhibits directional

dependencies, i.e. an anisotropic mesh contains elements which have some

(suitable) orientation.

Figure 2.1: Example of an anisotropic mesh, in which higher resolution in
required along a sinusoidal front.

An example of an anisotropic mesh is shown in Figure 2.1, where higher

resolution in required along a sinusoidal front. A magnified depiction of the

central region can be seen in Figure 2.2, which exposes in higher detail mesh

elements in the highly anisotropic area around the front. Those triangles are

stretched along the front direction. Different cases of space distortion are

found in other regions of the mesh, e.g. the top left corner where elements
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Figure 2.2: Magnification of the centre of mesh from Figure 2.1 around the
sinusoidal front, exposing in finer detail some mesh elements in
the highly anisotropic area. Elements are stretched along the
direction of the front. Moving away from the front, the mesh
becomes more uniform.

are orientated along the y-axis, as is shown in the magnification in Figure

2.3. Another example of gradually adapting a 3D mesh to the requirements

of an anisotropic problem can be seen in Figure 2.4 [89].

The error estimation gives information about how big or small a mesh

element should be. In 1-D, the solution error inside an element e (i.e. a line

segment) is defined as

ε = h2e |
∂2ψ

∂x2
|, (2.1)

where he is the length of element e and ψ is the solution variable. In multi-

dimensional problems, the error is defined as

ε = uT | H | u, (2.2)

where H is the Hessian of the solution equation and u is a vector which shows

the ideal length and orientation of element e [115]. Simply, the higher the

error inside an element the smaller this element has to become [89].

In the last equation, the vector u is constructed according to a metric

tensor M, i.e. a tensor which, for each point in the 2D (or 3D) space,
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Figure 2.3: Magnification of the top left corner of mesh from Figure 2.1
showing that most elements are stretched along the y-axis.

represents the desired length and orientation of an edge containing this

point. The metric tensor is discretised node-wise. The value of the metric

along a mesh edge can be taken by linearly interpolating the metric from

the edge vertices.

A metric tensor is essentially a symmetric matrix which defines length

of vectors and allows us to calculate inner products in generalised spaces

in the same way the dot product is used to define distance in the stan-

dard Euclidean space. As an example in 2D, let an edge be defined by

vertices V1(x1, y1) and V2(x2, y2); then the edge is represented by vector

E = (x0, y0) = (x2 − x1, y2 − y1). The Euclidean length of that edge is

given by the dot product:

LEuclidean = ‖ E ‖ =
√

E ·E =
√
x20 + y20 (2.3)

Analogously, the edge’s length with respect to a metric tensor M =

[
A B

B C

]
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Figure 2.4: Example of anisotropic mesh adaptation. On the top left, solv-
ing the PDE on an automatically triangulated mesh results in
high solution errors. Error estimations, as depicted in the bot-
tom left figure, indicate areas in which mesh resolution should
be focused. After one adaptation step (middle figures) mesh
quality has been improved and solution error is greatly reduced.
After two iterations (right figures) the results are even better.
(figure from [89])

(the tensor is symmetric) can be calculated using the inner product:

LM = ‖ E ‖M =
√

ETME =

√√√√[x0y0]
[
A B

B C

][
x0

y0

]
=

=
√
x20A+ 2x0y0B + y20C

(2.4)

The metric is defined in such a way that an edge of an element is of unit

length with respect to this metric if it has the desired error εu indicated by

this metric, i.e.

M =
1

εu | H̄ |
. (2.5)
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Figure 2.5: Example of a metric tensor in 2D. The green arrows on the
left are the eigenvectors of that tensor, each one scaled (mul-
tiplied) by the corresponding eigenvalue. Geometrically, the
tensor shows the direction to which the red triangle has to be
stretched and the amount of distortion required per component
of that direction. The result of stretching the triangle is shown
on the right.

The metric tensor M can be decomposed as

M = QΛQT , (2.6)

where Λ is a diagonal matrix the non-zero elements of which are the eigen-

values of M, and Q is an orthonormal matrix the rows of which are the

corresponding eigenvectors Qi for each eigenvalue λi. Geometrically, Q

represents a rotation of the axis system so that the base vectors show the

direction to which the element has to be stretched and Λ represents the

amount of distortion (stretching). Each eigenvalue λi represents the ideal

length of an edge in the direction Qi. An example is shown in Figure 2.5.

If we denote the diagonal values of the Hessian of the solution as hi, then

each eigenvalue λi is defined as

hi =
1√
λi
, (2.7)

so that stretching or compressing an element will be done in an inverse
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square fashion with respect to the error metric [93].

2.4 Element Quality

Many different measures of element quality have been proposed. An ex-

cellent review of different Euclidean geometric metrics for mesh generation

applications is given in [64] for 2D and [65] for 3D. However, as mesh gen-

eration is part of the preprocessing state, these metrics are not designed to

take into account characteristics of the solution. Therefore, other measures

of element quality have been proposed which do take into consideration both

the shape and size of the elements required for controlling solution errors

[17, 111, 4, 108, 89].

In the work described here, we use the element quality measure for trian-

gles proposed by Vasilevskii et al. [111]:

qM (4) = 12
√

3
|4|M
|∂4|2M︸ ︷︷ ︸
I

F

(
|∂4|M

3

)
︸ ︷︷ ︸

II

, (2.8)

where |4|M is the area of element4 and |∂4|M is its perimeter as measured

with respect to the metric tensor M as evaluated at the element’s centre.

The first factor (I) is used to control the shape of element 4. For an

equilateral triangle with sides of length l, |4| = l2
√

3/4 and |∂4| = 3l; and

so term I = 1. For non-equilateral triangles, I < 1. The second factor (II)

controls the size of element 4. The function F is smooth and defined as:

F (x) =

[
min

(
x,

1

x

)(
2−min

(
x,

1

x

))]3
, (2.9)

which has a single maximum of unity with x = 1 and decreases smoothly

away from this with F (0) = F (∞) = 0. Therefore, II = 1 when the sum of

the lengths of the edges of 4 is equal to 3, e.g. an equilateral triangle with

sides of unit length, and II < 1 otherwise. Hence, taken together, the two

factors in (2.8) yield a maximum value of unity for an equilateral triangle

with edges of unit length, and decreases smoothly to zero as the element

becomes less ideal.

In an anisotropic problem we can use the quantities of area and perimeter

if we express them with respect to a non-Euclidean metric M(x). For an
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element E with area | ∆ |E and edges of length ei in the standard Euclidean

space, its area with respect to the metric M(x) can be calculated as

| ∆ |M=
√

det(M) | ∆ |E (2.10)

and its perimeter as

| ∂∆ |M=
3∑
i=1

‖ ∂ei ‖M=
3∑
i=1

√
eTi Mei, (2.11)

where we consider that M is constant over the element E.

Adapting a mesh so that it distributes the error uniformly over the whole

mesh is, in essence, equivalent to constructing a uniform mesh consisting

of equilateral triangles with respect to the metric M . From Figure 2.6 we

can see that the ideal element is isotropic in metric space which means that

it will look anisotropic (elongated, stretched, aligned to physical solution

features) in Euclidean space.

Figure 2.6: Example of mapping of triangles between the standard Eu-
clidean space (left shapes) and metric space (right shapes). In
case (α), the elements in the physical space are of the desired
size and shape, so they appear as equilateral triangles with edges
of unit length in the metric space. In case (β), the triangle does
not have the desired geometrical properties, so it does not map
to an equilateral triangle in the metric space.(Figure from [93])

2.5 Overall Adaptation Procedure

Mesh improving techniques fall into two main categories, h-adaptivity and

r-adaptivity algorithms. The first category contains techniques which try
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to adapt the mesh by changing its topology. This can be done by remov-

ing existing mesh elements via edge collapse (§2.6.1); increasing local mesh

resolution via edge refinement by adding new elements, a procedure called

refinement (§2.6.2); or replacing a group of elements with a different group

via element-edge swaps (§2.6.3); The second group of adaptive algorithms

encompasses a variety of vertex smoothing techniques (§2.6.4), all of which

leave mesh topology intact and only attempt to improve quality by relo-

cating mesh vertices. While coarsening and refinement control the local

resolution, swapping and smoothing are used to improve the element qual-

ity.

Algorithm 1 gives a high level view of the anisotropic mesh adaptation

procedure as described by [71]. The inputs areM, the piecewise linear mesh

from the modelling software, and S, the node-wise metric tensor field which

specifies anisotropically the local mesh resolution requirements. Coarsening

is initially applied to reduce the subsequent computational and communi-

cation overheads. The second stage involves the iterative application of

refinement, coarsening and mesh swapping to optimise the resolution and

quality of the mesh. This is called the “h-adaptivity” loop. The loop termi-

nates once the mesh optimisation algorithm converges or after a maximum

number of iterations has been reached. Finally, mesh quality is fine-tuned

using some vertex smoothing algorithm (e.g. quality-constrained Laplacian

smoothing [39], optimisation-based smoothing [37]), which aims primarily

at improving worst-element quality. Smoothing is a fairly expensive com-

putational kernel which makes fine changes to the mesh. On the contrary,

the other three algorithms are less computationally demanding and make

grosser mesh modifications. Including smoothing in the main loop con-

siderably slows down the mesh optimisation procedure for no real benefit

in terms of mesh quality, since subsequent h-adaptivity sweeps can change

local quality to a great extent. It only makes sense to fine-tune element

quality once mesh topology has been fixed.
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Algorithm 1 Mesh optimisation procedure.

Inputs: M, S.
(M∗,S∗)← coarsen(M, S)
repeat

(M∗,S∗)← refine(M∗, S∗)
(M∗,S∗)← coarsen(M∗, S∗)
(M∗,S∗)← swap(M∗, S∗)

until (max number of iterations reached) or(algorithm convergence)
(M∗,S∗)← smooth(M∗, S∗)
return M∗

2.6 Adaptation Kernels

2.6.1 Edge Coarsening

Coarsening is the process of lowering mesh resolution locally by removing

mesh elements, leading to a reduction in the computational cost. There are

two adaptive methods that fall into this category, edge collapse and element

collapse. An edge collapses by reducing it into a single vertex. This way,

the two elements which share this edge are deleted. An example of this

operation is shown in Figure 2.7. Edge collapse is an oriented operation,

meaning that an edge can be reduced into a single vertex by following two

opposite directions, each one resulting in a different local patch. Element

collapse is a similar operation in which an element is reduced into a single

vertex, resulting in the deletion of four elements, the element which collapsed

plus the three elements which shared an edge with that element. Element

collapse is not implemented in PRAgMaTIc.

An algorithm for coarsening has been proposed by Li et al. [71]. The

algorithm operates on a list of candidate-edges. An edge is marked as being

a candidate if its length is shorter than a user-defined minimum length

Lmin. The goal is to remove as many candidate-edges as possible without

creating edges longer than a user-defined maximum length Lmax. Since we

are working in metric space, all lengths are calculated with respect to the

metric tensor field.

The coarsening kernel is described in Algorithm 2. The process starts

by iterating over the list of short edges, inserting all vertices that bound

these edges to a dynamic list. After this step, the algorithm loops over the

dynamic list, each time choosing an unprocessed vertex from the list. For
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Figure 2.7: Example of edge collapse. The dashed edge in the left figure
is reduced into a single vertex by bringing vertex VB on top of
vertex VA, as can be seen in the middle figure. The two elements
that used to share the dashed edge are deleted. Edge collapse is
an oriented operation, i.e. eliminating the edge by moving VB
onto VA results in a different local patch than moving VA onto
VB, which can be seen in the right figure.

the chosen vertex Vi, the algorithm decides whether any of the edges con-

nected to it can collapse with the removal of Vi, according to the criteria

mentioned above, i.e. the length of this edge must be less than Lmin and

after its collapse all other edges connected to Vi must remain shorter than

Lmax and no elements must be inverted as a result of this operation. If

the edge can collapse, the algorithm applies the operation, marks all ver-

tices adjacent to Vi as unprocessed and removes Vi from the mesh and the

dynamic list. Marking adjacent vertices as unprocessed serves the purpose

of propagation. Since the local neighbourhood has been modified by the

coarsening operation, those vertices must be (re-)examined for collapse.

As can be seen in Algorithm 2, unprocessed vertices are chosen from the

dynamic list in a controlled way, so that they are processed “topologically

every other one”. The purpose of enforcing this order is to maintain a good

vertex distribution and avoid the creation of excessively long edges. As an

example, in the local patch in Figure 2.8, if vertex VB collapses onto VC and

right after that VC collapses onto VD, the result will be an excessively long

edge VAVD. This processing schedule can be made explicit via colouring. In

this context, colouring the mesh is a required preprocessing step not only
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Algorithm 2 Serial edge collapse algorithm by Li et al. [71].

initialize a dynamic vertex list LD ← ∅
loop over the list of short edges

for each vertex Vi that bounds the edge do
if Vi is not in LD then

append Vi to LD
end if

end for
end loop
while there are unprocessed vertices in LD do

choose a vertex Vi from LD using the “every other vertex” rule
Si ← the set of all edges connected to Vi
Ej ← shortest edge in Si
if length of Ej > Lmin then . no adjacent edge can be removed

remove Vi from LD
else

evaluate collapse of Ej with the removal of Vi
if (∀Ei ∈ Si : length(Ei) ≤ Lmax) and( 6 ∃ inverted elements) then

apply collapse
mark all vertices adjacent to Vi as unprocessed
remove Vi from LD

else
mark Vi as processed . and Ej does not collapse

end if
end if

end while

for the parallel algorithm (as will be discussed in Section 4.1) but also for

the serial one.

2.6.2 Element Refinement

Refinement is the process of increasing mesh resolution locally. Although it

leads to an increase in the computational cost, refinement is a key process

in improving mesh quality.

The term refinement encompasses two operations: splitting of edges and

subsequent division of elements. When an edge is longer than desired it

is bisected, giving two shorter halves. An element can be split in three

different ways, depending on how many of its edges are bisected:

1. When only one edge is marked for refinement, the element can be split
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VC VD

VC VD VD

Figure 2.8: Example of edge collapse resulting in excessively long edges. If
vertex VB collapses onto VC and right after that VC collapses
onto VD, the result will be an excessively long edge VAVD.

across the line connecting the mid-point of the marked edge and the

opposite vertex. This operation is called bisection and an example of

it can be seen in Figure 2.9 (left shape).

2. When two edges are marked for refinement, the element is divided into

three new elements. This case is shown in Figure 2.9 (middle shape).

The parent element is split by creating a new edge connecting the

mid-points of the two marked edges. This leads to a newly created

triangle and a non-conforming quadrilateral. The quadrilateral can

be split into two conforming triangles by dividing it across one of its

diagonals, whichever is shorter.

3. When all three edges are marked for refinement, the element is divided

into four new elements by connecting the mid-points of its edges with

each other. This operation is called regular refinement and an example

of it can be seen in Figure 2.9 (right shape).

An algorithm for refinement has been proposed by Li et al. [71] and can be

seen in Algorithm 3. The process starts by initializing a list of edges marked

for refinement. The algorithm iterates over all mesh edges and marks for

refinement every edge longer than a user-defined maximum length Lmax

(all lengths are calculated in metric space). The point xc at which the edge

should be split is the middle point in metric space which can be calculated

as follows:

xc = x0 +
1

1 +
√

h1
h0

(x1 − x0), (2.12)
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Figure 2.9: Mesh resolution can be increased either by bisecting an element
across one of its edges (1:2 split, left figure), by performing a
1:3 split (middle figure) or by performing regular refinement to
that element (1:4 split, right figure).

where h0 and h1 are the desired edge lengths along ~e at the two ends x0,x1

of the edge, where ~e is the unit vector in the direction of the edge. After

xc has been calculated, a new vertex V (xc) is created and appended to the

mesh.

After this step, the algorithm loops over all mesh elements. For each

element, the algorithm examines how many of the element’s edges have

been marked for refinement. As was described previously, there can be three

discrete cases, each one being dealt with in a different way. Depending on

the case, the element is split into two, three or four new elements which are

appended to the mesh and the parent element is removed.

In other algorithms, when an element is refined the newly created vertices

are non-conforming and this non-conformity must be eliminated by propa-

gating the operation to neighbouring elements. By processing all edges first

and then refining each element according to the number of marked edges,

this algorithm eliminates the need for propagation.

2.6.3 Edge Swapping

Swapping is a local optimization technique which is used to improve mesh

quality by replacing low-quality elements with better ones. The total num-

ber of mesh elements remains the same, so there is not subsequent penalty
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Algorithm 3 Serial refinement algorithm by Li et al. [71].

initialize a list of edges for refinement LR ← ∅
loop over all mesh edges

if length of edge Ei > Lmax then
calculate where Ei should be split and create a new vertex Vi at

that point
append Ei to LR

end if
end loop
loop over all mesh elements

let T i be the current element
let refine cnt be the number of element edges Eij ∈ LR
switch refine cnt do

case 0
no refinement, continue to next element

case 1 . perform bisection
let Ei0 be the edge marked for refinement at new vertex V i

0

create a new edge between V i
0 and the vertex opposite Ei0

add the two newly created elements T i0 and T i1 to the mesh

case 2 . perform refinement using diagonals
let Ei0 and Ei1 be the edges marked for refinement
let V i

0 and V i
1 be the corresponding new vertices on Ei0 and Ei1

let V i
A resp. V i

B be the vertices opposite Ei0 resp. Ei1
create new edge V i

0V
i
1

create diagonal edge V i
0V

i
A or V i

1V
i
B, whichever is shorter

add the three newly created elements T i0, T
i
1 and T i2 to the mesh

case 3 . perform regular refinement
let Ei0, E

i
1 and Ei2 be the edges comprising T i

let V i
0 , V

i
1 and V i

2 be the corresponding new vertices

create new edges V i
0V

i
1 , V i

1V
i
2 and V i

2V
i
0

add the four new elements T i0, T
i
1, T

i
2 and T i3 to the mesh

remove T i from the mesh
end loop

on the computational cost.

In 2D, swapping is done in the form of edge flipping, i.e. flipping an

edge shared by two elements. The operation can be seen in Figure 2.10.

The common edge is flipped, resulting in the deletion of two original mesh

triangles and their replacement with two new ones. An edge is flipped only

if doing so improves the quality of the local mesh patch.
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As was the case in coarsening, swapping can be propagated for the pur-

pose of re-evaluating which edges are candidates for flipping after local mesh

topology has been altered. An example demonstrating the need for propaga-

tion in shown in Figure 2.11. After an edge has been flipped, local topology

is modified and adjacent edges which were not considered for flipping be-

fore are now candidates. At the end, this procedure results in a Delaunay

Triangulation, a triangulation in which the minimum element angle in the

mesh is the largest possible one with respect to all other triangulations of

the mesh [68].

Figure 2.10: Example of edge swapping. Flipping the common edge V0V1
results in the removal of triangles ̂V0V1V2 and ̂V0V1V3 and their
replacement with new triangles ̂V0V2V3 and ̂V1V2V3.

An algorithm for edge swapping has been proposed by Li et al. [71]. The

algorithm operates on a list of candidate-edges. The goal is to flip all edges

shared by elements which (elements) are of lower quality than a user-defined

minimum Qmin.

The 2D version of swapping which is implemented in PRAgMaTIc is

described in Algorithm 4. The process starts by initializing a list LS of

candidate edges. The algorithm iterates over all mesh edges and adds to LS

every edge which is shared by two elements the quality of which (the quality

of the worst element) is lower than Qmin. After this step, the algorithm

loops over the dynamic list, each time popping a candidate-edge. If the

worst element in the local patch is of higher quality than Qmin, then there

is no need to flip that edge. Otherwise, the algorithm tests whether flipping

the edge will improve the worst element quality. If this is the case, then the

original edge and elements are removed from the mesh, while the flipped

edge and the newly created triangles are appended. Additionally, the four

edges outlining the local patch are pushed into the dynamic list, therefore
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Figure 2.11: Example of swapping propagation. Initially (left figure), edge
AD is not considered a candidate for swapping because the
hypothetical triangles ÂBE and B̂DE are of poorer quality
than the original triangles ÂBD and ÂDE. Edge BD, on the
other hand, can be flipped, resulting in improved quality of the
local patch (middle figure). After this step, edge AD becomes

a candidate for swapping, as new elements ÂCE and ĈDE are
indeed of higher quality than the original elements ÂBD and
ÂDE(right figure).

propagating the operation.

2.6.4 Vertex Smoothing

Smoothing is a crucial component of many unstructured mesh adaptivity

algorithms. This provides a powerful, if heuristic, approach to improve

mesh quality. A diverse range of approaches to mesh smoothing have been

proposed [36, 92, 19, 39, 8, 18, 38, 89]. Effective algorithms for parallelising

mesh smoothing extracting concurrency have also been proposed within

the context of a Parallel Random Access Machine (PRAM) computational

model [37].

Quality constrained Laplacian Smooth

The kernel of the vertex smoothing algorithm should relocate the central

vertex such that the local mesh quality is increased (see Figure 2.12). Prob-

ably the best known heuristic for mesh smoothing is Laplacian smoothing,

first proposed by Field [36]. This method operates by moving a vertex

to the barycentre of the set of vertices connected by a mesh edge to the
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Algorithm 4 Serial edge swapping algorithm by Li et al. [71].

initialize a list of edges for swapping LS ← ∅
loop over all mesh edges Ei

find elements T i0 and T i1 sharing Ei

Qi ← min(quality[T i0], quality[T i1])
if Qi < Qmin then

append Ei to LS
end if

end loop
while LS 6= ∅ do

choose an edge Ei ∈ LS , Ei = V i
AV

i
B

remove Ei from LS
find elements T i0 = ̂V i

AV
i
BV

i
0 , T i1 = ̂V i

AV
i
BV

i
1 sharing Ei

Qi ← min(quality[T i0], quality[T i1])
if Qi > Qmin then . no need to consider this patch for swapping

continue . proceed to next edge in LS
end if
let Ej = V i

0V
i
1 . the flipped edge

let T jA = ̂V i
AV

i
0V

i
1 , T jB = ̂V i

BV
i
0V

i
1 . resulting elements

Qj ← min(quality[T jA], quality[T jB])
if Qj > Qi then . if quality of worst element is improved

remove Ei, T i0 and T i1 from mesh
append Ej , T jA and T jB to mesh

append edges V i
AV

i
0 , V i

BV
i
0 , V i

AV
i
1 , V i

BV
i
1 to LS . propagation

end if
end while

vertex being repositioned. The same approach can be implemented for non-

Euclidean spaces; in that case all measurements of length and angle are

performed with respect to a metric tensor field that describes the desired

size and orientation of mesh elements (e.g. [89]). Therefore, in general, the

proposed new position of a vertex ~vLi is given by:

~vLi =

∑J
j=1 ||~vi − ~vj ||M~vj∑J
j=1 ||~vi − ~vj ||M

, (2.13)

where ~vj , j = 1, . . . , J , are the vertices connected to ~vi by an edge of the

mesh, and || · ||M is the norm defined by the edge-centred metric tensor Mij .

In Euclidean space, Mij is the identity matrix.

As noted by Field [36], the application of pure Laplacian smoothing can
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Figure 2.12: Smoothing in a local mesh patch: ~vi is the vertex being re-
located; {ei,0, . . . , ei,m} is the set of elements connected to ~vi.
Smoothing is the operation which relocates ~vi to a new position
so that quality of {ei,0, . . . , ei,m} is improved.

actually decrease useful local element quality metrics; at times, elements can

even become inverted. This can happen if the vertex is relocated outside

its interior convex hull, i.e. the area within which the relocation has to

be restricted. An example of an interior convex hull for a mesh vertex can

be seen in Figure 2.13. Therefore, repositioning is generally constrained in

some way to prevent local decreases in mesh quality.

One variant of this, termed smart Laplacian smoothing by Freitag et

al. [39] (while Freitag et al. only discuss this for Euclidean geometry it

is straightforward to extend to the more general case), is summarised in

Algorithm 5. This method accepts the new position defined by a Laplacian

smooth only if it increases the infinity norm of local element quality, Qi (i.e.

the quality of the worst local element):

Q(~vi) ≡ ‖q‖∞, (2.14)

where i is the index of the vertex under consideration and q is the vector

of the element qualities from the local patch.

Optimisation based smoothing

A much more effective (albeit more computationally expensive) method of

increasing the local element quality is to solve a local non-smooth optimi-

sation problem, as shown in Algorithm 6. For this it is assumed that the

derivatives of non-inverted element quality are smooth, although the patch

quality given in equation (2.14) is not. Note that while qM (4) as defined

in equation (2.8) is not differentiable everywhere, it is differentiable almost

everywhere (as F is not differentiable at x=1). The algorithm proceeds by
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Figure 2.13: Example of an interior convex hull of a vertex. If the vertex
under consideration is relocated outside the grey zone, some
elements will be inverted and the mesh will be invalid.

stepping in the direction of the quality gradient of the worst element, ~s.

The step size, α, is determined by first using a first order Taylor expansion

to model how the quality of the worst element q′ will vary along the search

direction:

q′ = q + α~∇q · ~s. (2.15)

With the choice of ~s ≡ ~∇q/|~∇q|, this becomes

q′ = q + α|~∇q|. (2.16)

Similarly, the qualities of the other elements q′e can be modelled with a

Taylor expansion, where we consider the elements quality gradient projected

onto the search direction:

q′e = qe + α~s · ~∇qe. (2.17)
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Algorithm 5 Smart smoothing kernel: a Laplacian smooth operation is
accepted only if it does not reduce the infinity norm of local element quality.

~v0i ← ~vi
quality0 ← Q(~vi)
n← 1 . Initialise iteration counter
~vni ← ~vLi . Calculate new vertex location using Laplacian smooth and
Mn
i ← metric interpolation(~vni ) . interpolate metric tensor.

qualityn = Q(~vni ) . Calculate the new local quality for this relocation.
. Loop for max number of iterations or until improvement is made.

while (n ≤ max iteration)and(qualityni − quality0i < σq) do
~vn+1
i ← (~vni + ~v0i )/2
Mn+1
i ← metric interpolation(~vn+1

i )
qualityn+1 ← Q(~vn+1

i )
n = n+ 1

end while
if qualityni − quality0i > σq then . If mesh is improved

~vi ← ~vni . update vertex location
Mi ←Mn

i . and metric tensor for that vertex
end if

When the quality function of the worst element intersects with the quality

function of another element (i.e. when q′ = q′e for some e), we have a point

beyond which improving the quality of the worst element would degrade the

quality of the patch as a whole. Therefore, we equate the two expressions

and solve for α:

α =
q − qe

~s · ~∇qe − |~∇q|
. (2.18)

Subsequently, a new search direction is chosen and another step is taken.

This is continued until the algorithm converges. The convergence criterion

chosen is either a limit on the maximum number of iterations or when the

projected improvement in quality falls below some tolerance σq.

2.7 Summary

This chapter provided a brief overview of anisotropic mesh adaptivity. We

described some elementary concepts about the Finite Element Method and

the need to control solution error, highlighting the context in which adap-

tivity is used. The special case of anisotropic problems was explained in

more detail, with examples of what a metric tensor is and how it is used to
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Algorithm 6 Optimisation based smoothing kernel: local element quality
is improved by solving a local non-smooth optimisation problem.

. Apply initial smart Laplacian smooth to improve starting position.
smart smooth kernel(~vi,Mi)
quality0 ← Q(~vi)
n← 0
repeat . Hill climbing until no further improvement in local quality
{~∇qe0 , ..., ~∇qej , ...} . Calculate initial element quality gradients.

~sn = ̂∇~qej |qej≡Q(~vi) . Choose search direction to be that of the

. quality gradient of the worst local element.
α = nearest discontinuity() . Calculate α using equation (2.18).
~vn+1
i = ~vni + α~sn . Propose new location for vertex.
Mn+1
i ← metric interpolation(~vn+1

i ) . Interpolate metric tensor and
qualityn+1 ← Q(~vn+1

i ) . evaluate local quality using that location.
if qualityn+1

i − qualityni > σq then . If the improvement is > σq
~vi ← ~vni . accept proposed location
Mi ←Mn

i . and update metric tensor.
end if
n = n+ 1

until (n ≥ max iteration)or(qualityni − quality
n−1
i < σq)

calculate distances in a generalised space. We analysed the objective func-

tional by Vasilevskii and Lipnikov, which is used as a measure of element

quality. At the end we presented the general mesh adaptation procedure

and listed algorithms for each optimisation phase, namely coarsening, re-

finement, swapping and smoothing.

In the following chapter we are about to discuss related work on parallel

anisotropic mesh adaptivity and similar morph algorithms, i.e. algorithms

which modify irregular data in non-trivial ways by mutating the relation-

ships between them.
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3 Related Work

In this chapter we discuss related work on mesh adaptivity, the primary ob-

jective of this research, and auxiliary techniques regarding parallel worklists

and optimistic execution used in the scope of general morph algorithms. Re-

lated work on further techniques (graph colouring and work-stealing sched-

ulers) is presented in the respective Chapters 5 and 7.

3.1 Mesh Adaptivity

There are a number of examples where adaptive mesh methods have been

extended to distributed memory parallel computers. The main challenges

in performing mesh adaptation in parallel is maintaining a consistent mesh

across domain boundaries as well as load-balancing the adapted mesh.

One approach, proposed by Coupez et al., is to first lock the regions of

the mesh which are shared between processes and for each process to apply

the serial mesh adaptation operation to the rest of the local domain. The

domain boundaries are then perturbed away from the locked region and

the lock-adapt iteration is repeated [28]. Parallel efficiency of this approach

drops quickly, reaching 18% when using 32 processors on a 2D mesh.

Freitag et al. [37, 40] considered a fine grained approach whereby a global

task graph is defined which captures the data dependencies for a particular

mesh adaptation kernel. This graph is coloured in order to identify indepen-

dent sets of operations. The parallel algorithm then progresses by selecting

an independent set (vertices of the same colour) and applying mesh adapta-

tion kernels to each element of the set. Once a sweep through a set has been

completed, data is synchronised between processes, and a new independent

set is selected for processing.

In the approach described by Alauzet et al. [6], each process applies

the serial adaptive algorithm, however rather than locking the halo region,

operations to be performed on the halo are first stashed in buffers and
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then communicated so that the same operations will be performed by all

processes that share mesh information. For example, when coarsening is

applied all the vertices to be removed are computed. All operations which

are local are then performed while pending operations in the shared region

are exchanged. Finally, the pending operations in the shared region are

applied.

Southern et al. propose a strategy similar to Coupez et al.. The key

difference is that, whereas in Coupez et al. previously locked regions are

migrated from one processor to another, in Southern et al. the whole mesh is

repartitioned in such a way that regions requiring further adaptation do not

fall on the partition boundary and consequently a processor is free to work

on them using the serial adaptive algorithms. This problem is equivalent

to minimising the edge-cut after having assigned appropriate weights to

edges in regions where further processing is needed. Partitioning and load

balancing is achieved using the ParMETIS graph partitioning library [63].

Lipnikov and Vassilevski follow an entirely different approach [72]. The

mesh is not distributed among participating processors; instead, the entire

mesh is made known to everyone. Decomposition is executed serially on

the root processor and adaptation is done on parallel, with each processor

working on the sub-domain assigned by the root. Finally, the mesh is re-

gathered onto the root processor and this iterative procedure is repeated

to convergence. The authors admit that their approach is not scalable and

communication dominates computation with as few as 8 processors.

Lepage et al. [70] discuss the drawbacks of distributed-memory paral-

lel designs in comparison with shared-memory counterparts and present a

modified version of Coupez et al. in which vertex smoothing operations are

terminated if any of the participating processors has finished its adaptive

step. This design compromises mesh quality for the sake of scalability. The

authors demonstrate a parallel efficiency of 68% on 8 processors.

3.2 General Morph Algorithms and Amorphous

Data Parallelism

Adaptive mesh algorithms fall into the broader group of general morph

algorithms, which morph the underlying data structures in non-trivial ways
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by adding/removing nodes and edges and mutilating their adjacency lists.

Some examples of morph algorithms are investigated in [84]:

• Survey Propagation, a heuristic SAT solver based on Bayesian infer-

ence.

• Points-to Analysis, a key static compiler technique.

• Boruvkas Minimum Spanning Tree Algorithm, which computes a min-

imum spanning tree of an undirected graph using edge contraction.

This publication pertains mainly to GPUs, however the same work is appli-

cable to multicore and manycore platforms as well. Other morph algorithms

have been studied throughout the literature, but the ones mentioned above

(alongside mesh adaptivity) are the most general in nature and exhibit im-

portant challenges.

Morph algorithms are examples of irregular programs exhibiting amor-

phous data parallelism [94, 95], i.e. a generalised form of data parallelism

which cannot be extracted using static analysis (e.g. in compile-time, as a

preprocessing step etc.) but can be uncovered in runtime. There have been

efforts toward exploiting amorphous parallelism for specific applications,

like breadth-first graph traversal on GPUs [82].

In recent years, there is a lot of ongoing research on domain-specific lan-

guages and libraries with high-level constructs which allow developers to

describe their algorithms intuitively while exposing the inherent data par-

allelism. Green-Marl [55] is an example of a domain-specific language for

graph-data based algorithms. The Green-Marl compiler translates high-

level algorithmic descriptions into OpenMP C++ code, exploiting the data-

parallelism exposed via the high-level descriptions. SNAP [77] is an open-

source graph framework aiming at the study and partitioning of large-scale

networks. GraphLab [74, 73] is an abstraction for machine learning and

data-mining applications which expresses dynamic, graph-parallel computa-

tion while ensuring data consistency and high performance, both in shared-

memory environments and distributed systems.

The aforementioned frameworks/DSLs assume that the relationship/con-

nectivity of the underlying irregular data is constant, i.e. graph topology

is immutable throughout the execution of an algorithm. Morph algorithms

have different requirements which dictate the use of more versatile solutions.

53



Pregel [78] is a framework for processing large graphs in a vertex-centric way,

while partially supporting mutation of graph topology. Pregel’s restriction

is that mutations have to be local, i.e. a vertex can add/remove its own

outgoing edges or remove itself from the mesh; no other topology modifica-

tions are allowed. Therefore, this framework is not as powerful as we need

for general morph algorithms.

Galois [51, 95] is a general-purpose system for shared-memory machines

which can exploit amorphous data-parallelism in irregular codes that are or-

ganised around pointer-based data structures, including graphs. It provides

support for general morph algorithms, i.e. graph topology can be mutated

in every way indicated by the algorithm. Galois uses an irregular compute

methodology similar to the one we have developed in this research for par-

allel worklist algorithms, i.e. algorithms in which work items are obtained

from a list and new tasks generated from the processing of a work item are

added to the list. In Section 4.7 we highlight the basic differences between

Galois and our framework.

3.3 Summary

In this chapter we presented related work in the field of parallel anisotropic

mesh adaptivity and concluded that most efforts target distributed-memory

parallelism, leaving a gap to be filled for mesh adaptivity in the manycore

era. Following that, we reviewed efforts around frameworks, domain-specific

languages and libraries for parallelising algorithms with irregular data and

exploiting amorphous parallelism. In the following chapter we are going

to present an irregular compute methodology which was developed to as-

sist us in developing parallel adaptive mesh algorithms for shared-memory

systems.
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4 Irregular Compute Methodology

In this chapter we discuss our design choices and the techniques we have

used which allow safe and scalable parallel execution of algorithms on un-

structured data. Although anisotropic mesh adaptivity is the test case we

used, the same compute methodology can be generalised for other applica-

tions with unstructured data.

To allow fine grained parallelisation of anisotropic mesh adaptation we

make extensive use of maximal independent sets. This approach was first

suggested in a parallel framework proposed by Freitag et al. [40]. How-

ever, while this approach avoids updates being applied concurrently to the

same neighbourhood, data writes will still incur significant lock and syn-

chronisation overheads. For this reason we incorporate a deferred updates

strategy, described below, to minimise synchronisations and allow parallel

writes. Propagation of adaptive operations is assisted by the use of parallel

worklists, manipulated with atomics.

4.1 Parallel Execution Framework

Trying to ensure data consistency is one of the main reasons why parallel

execution performance can be hindered. Defining tasks that can execute

concurrently is challenging because of the complex data dependencies. Locks

and synchronisations need to be avoided where possible because they can

severely degrade the scalability of mesh adaptivity.

Freitag et al. [40] introduced the concept of elemental operations (or com-

pute kernels, using modern terminology) and proposed that data consistency

is maintained only in between successive executions of these operations (and

not during the execution). This requirement leads to the formulation of the

elemental operation steps:

(a) Parallel execution of a set of some mesh improving techniques in each

participating processing unit.
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(b) Global reduction between these units to update data modified by (a).

Retaining data consistency comprises three requirements. The first one

pertains to the uniqueness of data ownership; there cannot exist two pro-

cessing units sharing ownership of the same data. In the context of shared-

memory (intra-node) parallelism, there is no notion of ownership since all

logical threads have read/write access to the entire mesh. Secondly, every

mesh vertex must have complete knowledge of its neighbouring vertices, i.e.

their IDs and their coordinates on the mesh. Neighbouring relationship has

to be reciprocal, i.e. if processor P1 owns vertex V1 and P1 knows that V1

is adjacent to V2 owned by processor P2, then P2 also has to know that V2

is V1’s neighbour. Finally, there is an analogous requirement for reciprocal

knowledge of element adjacency.

The execution of an adaptive algorithm can be modelled with the use of

an operation task graph G. The elemental operations comprising the execu-

tion of the algorithm are represented as vertices of G. An edge connects two

vertices if the respective elemental operations depend on each other. Using

the task graph allows us to extract independent sets of operations that can

be safely executed in parallel. Independent sets can be obtained by using

some graph colouring algorithm. After processing an independent set, a

global reduction takes place so that updated adjacency information is cir-

culated among neighbouring processors. At this point it is guaranteed that

the distributed data structure is consistent, since all operations executed

were independent from each other.

The general algorithm is summarised in Algorithm 7. This algorithm

consists of two loops. The outer loop is call the propagation loop, because

it spawns new elemental operations. As was described earlier, propagation

is necessary because topological changes to a local mesh patch might give

rise to new configurations of better quality (see Figure 2.11). As for the

inner loop, the number of iterations performed depends on the task graph

and, more importantly, the way independent sets are extracted from it. The

nature of adaptive algorithms used in this project implies that the elemen-

tal operations can run asynchronously and mostly require only one-to-one

communication between processing units (for other optimisation algorithms

a few global reductions would also be required). This property is very im-

portant in the scope of efficiency and scalability of a parallel application.
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Algorithm 7 General parallel algorithm by Freitag et al. [40] for mesh
adaptation.

G ← the operation task graph
while G 6= ∅ do

colour G
initialize new set R ← ∅
for all independent sets Ij of G do

execute all operations of Ij in parallel
R ← R∪ {new elemental operations spawned by processing Ij}

end for
G ← R

end while

4.2 Design Choices

4.2.1 Threading Mechanism

In view of the switch to multi-core nodes, adaptive mesh methods based

on traditional task-based parallelism (as described in Section 4.1) require

an update in order to be able to fully exploit the increased level of intra-

node parallelism offered by the latest generation of supercomputers. Purely

thread-based parallelism (using OpenMP or pthreads) can fully exploit the

shared memory within a node. OpenMP is our preferred choice due to its

greater potential for use with co-processors such as Intel R©Xeon Phi
TM

[66]

and its simpler interface (via #pragma directives in C code), that simplifies

code maintenance, while there is excellent support by various toolsets (e.g.

profilers and debuggers).

4.2.2 Processor affinity

The native thread queue scheduling algorithm is not optimal for high per-

formance computing. Processor affinity (introduced in Linux kernel 2.5.8) is

a modification of the native kernel scheduling algorithm which allows users

to prescribe at run time a hard affinity between threads and CPUs. Each

thread in the queue has a tag indicating its preferred CPU (or core). Pro-

cessor affinity takes advantage of the fact that some remnants of a process

may remain in one processor’s state (in particular, memory pages and cache)

from the last time the thread ran, and so scheduling it to run on the same

processor the next time could result in the process running more efficiently
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than if it were to run on another processor. Overall system efficiency in-

creases by reducing performance-degrading situations such as fetching data

from memory nodes which are not directly connected to the CPU and cache

misses.

4.2.3 Mesh Data Structures

The minimal information required to represent a mesh is an element-node

list (referred to as ENList), which is implemented in PRAgMaTIc as an

STL vector of triplets of vertex IDs (std::vector<int>), and an array

of vertex coordinates (referred to as coords), which is an STL vector of

pairs of coordinates (std::vector<double>). Element eid is comprised of

vertices ENList[3*eid], ENList[3*eid+1] and ENList[3*eid+2], whereas

the x- and y-coordinates of vertex vid are stored in coords[2*vid] and

coords[2*vid+1] respectively.

It is also necessary to store the metric tensor field. The field is discre-

tised node-wise and every metric tensor is a symmetric 2-by-2 matrix. For

each mesh node, we need to store three values for the tensor: two values

for the two on-diagonal elements and one value for the two off-diagonal el-

ements. Thus, metric is an STL vector of triplets of metric tensor values

(std::vector<double>). The three components of the metric at vertex vid

are stored at metric[3*vid], metric[3*vid+1] and metric[3*vid+2].

All necessary structural information about the mesh can be extracted

from ENList. However, it is convenient to create and maintain two addi-

tional adjacency-related structures, the node-node adjacency list (referred

to as NNList) and the node-element adjacency list (referred to as NEList).

NNList is implemented as an STL vector of STL vectors of vertex IDs

(std::vector< std::vector<int> >). NNList[vid] contains the IDs of

all vertices adjacent to vertex vid. Similarly, NEList is implemented as an

STL vector of STL sets of element IDs (std::vector< std::set<int> >)

and NEList[vid] contains the IDs of all elements which vertex vid is part

of.

It should be noted that, contrary to common approaches in other adap-

tive frameworks, we do not use other adjacency-related structures such as

element-element or edge-edge lists. Manipulating these lists and maintain-

ing their consistency throughout the adaptation process is quite complex
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and constitutes an additional source of overhead. Instead, we opted for

the approach of finding all necessary adjacency information on the fly using

ENList, NNList and NEList.

4.3 Topological Hazards and Vertex Colouring

There are two types of hazards when running adaptive algorithms in parallel:

topological (or structural) hazards and data races. The term topological

hazards refers to the situation where an adaptive operation results in invalid

or non-conforming edges and elements. An example can be seen in Figure

4.1. If two threads flip edges AD and BD at the same time, the result will

be two new edges AC and BE crossing each other. Structural hazards can

be avoided by colouring mesh vertices and processing them in batches of

independent sets. A discussion on data races and how they can be avoided

follows in Section 4.4.

A

B

C

D

E

A

B

C

D

E

Figure 4.1: Example of topological hazard when running adaptive mesh al-
gorithms in parallel. If two threads flip edges AD and BD at
the same time, the result will be an invalid local mesh patch in
which two edges AC and BE cross each other.

Inspired by Freitag’s parallel framework, we designed our implementa-

tions so that all elemental operations are operations on vertices, i.e. the task

graph G is the mesh itself and parallel adaptivity is achieved via assigning
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all vertices of an independent set to participating threads. This saves us

from constructing and maintaining other complex data structures, like edge-

edge and element-element adjacency lists. In coarsening and smoothing this

choice is straightforward to understand, since those algorithms operate di-

rectly on vertices (for removal or relocation). For refinement and swapping,

which operate on edges, we follow the convention that an edge may only

be processed (split or flipped) by the thread which has been assigned the

vertex with the lesser ID.

The fact that topological changes are made to the mesh means that the

graph colouring is frequently invalidated and the mesh has to be re-coloured

before proceeding to the next iteration of the adaptive algorithm. Therefore,

a fast scalable graph colouring algorithm is vital to the overall performance.

In this work we have developed a parallel colouring algorithm based on

previous work by Çatalyürek et al. [20]. In Chapter 5 we discuss and

compare a number of parallel graph colouring techniques and present how

the new improved algorithm was devised.

4.4 Data Races and Deferred Updates

Data races in adaptive mesh algorithms can appear when two or more

threads try to update the same adjacency list. An example can be seen

in Figure 4.2. Having coloured the mesh, two threads are allowed to process

vertices VB and VD at the same time and without structural hazards. One

thread T0 coarsens edge VBVC and vertex VB collapses on VC . NNList[ VC

] and NEList[ VC ] are modified by T0, e.g. VA must be added to NNList[

VC ]. At the same time, another thread T1 coarsens edge VDVC and vertex

VD collapses on VC . NNList[ VC ] and NEList[ VC ] are modified by T1 as

well, e.g. VE must be added to NNList[ VC ]. Both threads try to update

NNList[ VC ] and NEList[ VC ] at the same time, so there is a data race

which could lead to data corruption.

One solution could be a 2-distance colouring of the mesh (a d-distance

colouring of G is a colouring in which no two vertices share the same colour

if these vertices are up to d edges away from each other or, in other words, if

there is a path of length≤ d from one vertex to the other [35]). Although this

solution guarantees a race-free execution, calculating a 2-distance colouring

is expected to take more time than a simple 1-distance colouring while using
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VA VB

VC VD

VE

Figure 4.2: Example of data races when trying to update adjacency lists in
parallel. Only colouring the mesh is not enough to guarantee
race-free execution.

a higher number of colours. We opted for another approach, which we call

“deferred updates mechanism”.

In an shared-memory environment with nthreads OpenMP threads, ev-

ery thread has a private collection of nthreads lists, one list for each

OpenMP thread (see Figure 4.3). When NNList[i] or NEList[i] have

to be updated, the thread does not commit the update immediately; in-

stead, it pushes the update back into the list corresponding to thread with

ID tid = i%nthreads. After processing an independent set (recall that every

algorithm is organised as a series of adaptive sweeps through independent

sets) and before proceeding to the next one, every thread tid visits the

private collections of all OpenMP threads (including its own), locates the

list that was reserved for tid and commits the operations which are stored

there. This way, it is guaranteed that for any vertex Vi, NNList[ Vi ] and

NEList[ Vi ] will be updated by only one thread. Because updates are not

committed immediately but are deferred until the end of the iteration of an

adaptive algorithm, we call this technique the deferred updates. A typical

usage scenario is demonstrated in Code Snippet 1. It can be said that this

mechanism is our way of implementing Freitag’s proposal that “data con-

sistency is maintained only in between successive executions of an adaptive
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Figure 4.3: Schematic depiction of the deferred updates mechanism. Ev-
ery thread has a private collection of nthreads lists. Updates
from thread TU pertaining to vertex i are pushed back into list
L[TU ][TC ], where TC = i%nthreads is the thread responsible
for committing the updates for that vertex. After processing an
independent set, every thread TC visits all lists L[0..n − 1][TC ]
and commits the operations stored on them.

algorithm and not during the execution”.

An important advantage of the deferred updates strategy is that it does

not lead to differences in quality of the final mesh compared to an “as

we go” write-back scheme. By committing the updates at the end of ev-

ery independent set, we always use the most up-to-date information. Not
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1 typede f std : : vector<Updates> DeferredOperationsList ;
2 i n t nthreads = omp_get_max_threads ( ) ;
3

4 // Create nthreads c o l l e c t i o n s o f d e f e r r ed ope ra t i on s l i s t s
5 std : : vector< std : : vector<DeferredOperationsList> > defOp ;
6 defOp . resize ( nthreads ) ;
7

8 #pragma omp p a r a l l e l
9 {

10 // Every OMP thread execute s
11 i n t tid = omp_get_thread_num ( ) ;
12 defOp [ tid ] . resize ( nthreads ) ;
13 // By now , every OMP thread has a l l o c a t e d one l i s t per thread .
14

15 // Process one independent s e t in p a r a l l e l
16 // Defer any updates u n t i l the end o f the for−loop
17 #pragma omp f o r
18 f o r ( i n t i=0; i<nVerticesInSet ; ++i ){
19 execute kernel ( i ) ;
20

21 // Update w i l l be committed by thread i%nthreads
22 // where the modulo avo ids rac ing .
23 defOp [ tid ] [ i%nthreads ] . push_back ( some_update_operation ) ;
24 }
25

26 // Traverse a l l l i s t s which were a l l o c a t e d
27 // f o r thread t i d and commit any updates found .
28 f o r ( i n t i=0; i<nthreads ; ++i ){
29 commit_all_updates ( defOp [ i ] [ tid ] ) ;
30 }
31

32 // Proceed to the next independent s e t . . .
33 }

Code Snippet 1: Typical example of using the deferred updates mechanism

using stale data eliminates the risk of mesh data corruption in coarsen-

ing, refinement and swapping, whereas in smoothing we have a faster-

converging Gauss-Seidel-style iteration process. Additionally, memory foot-

print of this mechanism is negligible. Complexity in terms of memory is

Θ (vertices in independent set).

4.5 Worklists and Atomic Operations

There are many cases where it is necessary to create a worklist of items

which need to be processed. An example of such a case is the creation of

the active sub-mesh in coarsening and swapping, as will be described in

Sections 6.1 and 6.3, respectively. Every thread keeps a local list of vertices

it has marked as active and all local worklists have to be accumulated into
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a global worklist, which essentially is the set of all vertices comprising the

active sub-mesh.

One approach is to wait for every thread to exit the parallel loop and then

perform a prefix sum [11] (also known as inclusive scan or partial reduction

in MPI terminology) on the number of vertices in its private list. After that,

every thread knows its index in the global worklist at which it has to copy

the private list. This method has the disadvantage that every thread must

wait for all other threads to exit the parallel loop, synchronise with them

to perform the prefix sum and finally copy its private data into the global

worklist. Profiling data indicates that this way of manipulating worklists is

a significant limiting factor towards achieving good scalability.

Experimental evaluation showed that, at least on the Intel R©Xeon R© and

Intel R©Xeon Phi
TM

, a better method is based on atomic operations on a

global integer variable which stores the size of the worklist needed so far.

Every thread which exits the parallel loop increments this integer atomi-

cally while caching the old value. This way, the thread knows immediately

at which index it must copy its private data and increments the integer by

the size of this data, so that the next thread which will access this integer

knows in turn its index at which its private data must be copied. Caching

the old value before the atomic increment is known in OpenMP terminology

as atomic capture. Support for atomic capture operations was introduced

in OpenMP 3.1. This functionality has also been supported by GNU ex-

tensions (intrinsics) since GCC 4.1.2, known under the name fetch-and-add.

An example of using this technique is shown in Code Snippet 2. A similar

atomic-based approach (using atomic compare-and-swap) is used in Galois

for certain types of worklists.

Note the nowait clause at the end of the #pragma omp for directive. A

thread which exits the loop does not have to wait for the other threads to

exit. It can proceed directly to the atomic operation. It has been observed

that dynamic scheduling for OpenMP for-loops is what works best for most

of the adaptive loops in mesh optimisation because of the irregular load

balance across the mesh. Depending on the nature of the loop and the

chunk size, threads will exit the loop at significantly different times. Instead

of having some threads waiting for others to finish the parallel loop, with

this approach they do not waste time and proceed to the atomic increment.

The profiling data suggests that the overhead or spinlock associated with
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1 i n t worklistSize = 0 ; // Points to end o f the g l oba l wo rk l i s t
2 std : : vector<Item> globalWorklist ;
3

4 // Pre−a l l o c a t e enough space
5 globalWorklist . resize ( some_appropriate_size ) ;
6

7 #pragma omp p a r a l l e l
8 {
9 std : : vector<Item> private_list ;

10

11 // Pr ivate l i s t − no need to synchron i s e at end o f loop .
12 #pragma omp f o r nowait

13 f o r ( all items which need to be processed ){
14 do_some_work ( ) ;
15 private_list . push_back ( item ) ;
16 }
17

18 // Pr ivate va r i ab l e − the index in the g l oba l wo rk l i s t
19 // at which the thread w i l l copy the data in p r i v a t e l i s t .
20 i n t idx ;
21

22 #pragma omp atomic capture

23 {
24 idx = worklistSize ;
25 worklistSize += private_list . size ( ) ;
26 }
27

28 memcpy(&globalWorklist [ idx ] , &private_list [ 0 ] ,
29 private_list . size ( ) ∗ s i z e o f ( Item ) ) ;
30

31 }

Code Snippet 2: Example of creating a worklist using OpenMP’s atomic
capture operations.

atomic-capture operations is insignificant.

4.6 Reflection on Alternatives

Our initial approach to dealing with structural hazards, data races and

propagation of adaptivity was based on a thread-partitioning scheme in

which the mesh was split into as many sub-meshes as there were threads

available. Each thread was then free to process items inside its own parti-

tion without worrying about hazards and races. Items on the halo of each

thread-partition were locked (analogous to the MPI parallel strategy used

by other research groups); those items would be processed later by a sin-

gle thread. However, this approach did not result in good scalability for

a number of reasons. Partitioning the mesh was a significant serial over-
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head, which was incurred repeatedly as the adaptive algorithms changed

mesh topology and invalidated the existing partitioning. In addition, the

single-threaded phase of processing halo items was another hotspot of this

thread-partition approach. In line with Amdahl’s law, these effects only

become more pronounced as the number of threads is increased. For these

reasons this thread-level domain decomposition approach was not pursued

further.

4.7 Comparison with Galois and Optimistic

Execution

Apart from mesh adaptivity, the irregular compute methodology presented

in this chapter can be used for general morph algorithms. Our framework

is just as powerful as Galois, albeit accomplishing the goals of high perfor-

mance and safe parallel execution by following a different approach.

The key difference between the two approaches lies in explicitly thread-

safe vs optimistic execution. Galois already abstracts worklist manipulation

(in fact, it supports more iteration-scheduling policies in addition to linear

queues) and provides special data structures which are essential for thread-

safe execution under the optimistic (or speculative) model. The idea of

speculative execution is that a thread executes the computational kernel

as if it were the only worker in the system, without caring about races; if

another thread tries to modify data already marked as being locked by the

first thread, then a conflict is reported to the runtime system and one of

the conflicting activities is reverted (rolled-back). Once the user has written

the algorithm using Galois-provided data structures and annotated which

loops are to be executed in parallel, “the Galois system then speculatively

extracts as much parallelism as it can.” [51].

On the other hand, our methodology in its current form explicitly enforces

thread safety by using the combination of colouring and the deferred op-

erations mechanism to accomplish race-free parallel execution, without any

provision of special data structures to support speculation. Both approaches

involve some overhead:

• Optimistic execution: Overhead of rolling-back and re-attempting to

apply the computational kernel to a subset of the graph.
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• Our framework: Overhead of graph colouring and committing the

deferred updates (which involves additional thread synchronisation).

Neither approach seems to be universally superior to the other; we believe

that performance of each methodology is highly dependent upon the specific

algorithm under consideration as well as properties (e.g. connectivity) of

the graph.

4.8 Conclusion

In this chapter we described our methodology for working with irregular

data. We listed our design choices regarding mesh data structures, which

made maintenance of their consistency easier. We demonstrated what kind

of topological hazards there are in adaptive kernels and how the colouring-

based parallel framework by Freitag et al. ensures that the mesh structure

is not invalidated during adaptation. We also gave an overview of poten-

tial data races while committing changes to the mesh and showed that the

deferred-updates strategy eliminates them. Finally, we discussed our al-

ternative approach to the creation of parallel worklists using atomic fetch-

and-add, a technique which has the advantage of being synchronisation-free

compared to classic reduction-based approaches.

The importance of graph colouring in adaptive algorithms made us go

after a fast and scalable way of colouring the mesh. In the next chapter

we will review previous work on parallel graph colouring and present an

improved technique which is shown to outperform its predecessors.
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5 Graph Colouring and

Speculative Execution

Unstructured mesh applications, like anisotropic mesh adaptivity, are be-

ing optimised for modern multi-core and many-core architectures. Graph

colouring is often an important preprocessing step as a means of guaran-

teeing safe parallel execution in a shared-memory environment. Examples

of such applications include (but are not limited to) iterative methods for

sparse linear systems [62], sparse tiling [106], eigenvalue computation [79]

and preconditioners [102, 56].

The total run time of a colouring algorithm adds to the overall parallel

overhead of the application whereas the number of colours used determines

the amount of available parallelism. A fast and scalable colouring algorithm

using as few colours as possible is vital for the overall parallel performance

and scalability of many unstructured mesh applications. In this chapter

we study various parallel colouring techniques and show how we devised

an improved version based on speculative execution which runs faster than

existing methods while keeping the number of used colours at the same low

levels.

5.1 Background and Related Work

The simplest graph colouring algorithm (and one of the most commonly

used) is the greedy one, formally known as First-Fit colouring (§5.2). There

have been efforts towards parallelising the algorithm for shared-memory en-

vironments (distributed-memory versions also exist, but studying them is

out of scope of this research). Non-greedy techniques like Largest-Degree-

First [113], Smallest-Degree-Last [81], Saturation-Degree-Ordering [15] and

Incidence-Degree-Ordering [24] were not considered here because they either

are not well-suited to parallelisation or have worse than linear complex-
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ity (O(n2), O(n3)) and do not minimise the amount of colours sufficiently

enough to justify the extra runtime compared to the greedy algorithm [7].

The most notable parallel greedy colouring algorithm is the one by Jones

and Plassmann [61] (§5.3), which in turn is an improved version of the orig-

inal Maximal Independent Set algorithm by Luby [75]. A modified version

of Jones-Plassmann, presented at the 2012 Nvidia GPU Technology Confer-

ence by Jonathan Cohen and Patrice Castonguay [23], uses multiple hashes

to minimise thread synchronisation (§5.4).

A different series of parallel greedy colouring algorithms based on spec-

ulative execution was introduced by Gebremedhin and Manne [47] (§5.5).

Çatalyürek et al. presented an improved version of the original algorithm

in [20] (§5.6). We took the latter one step further, devising a method which

runs under an even more speculative scheme with less thread synchroniza-

tion (§5.7). Although performance on 2D simplicial meshes is not signifi-

cantly improved, we show that the new technique can perform considerably

faster than its predecessor on 3D simplicial meshes and on highly irregu-

lar graphs with high-degree vertices by scaling further on multi-core and

many-core systems, while using equally few colours.

5.2 First-Fit Colouring

Colouring a graph with the minimal number of colours has been shown

to be an NP-hard problem [46]. For any planar graph (like 2D simplicial

meshes), it is known that the chromatic number, i.e. the optimal number

of colours required to colour it, is 4 [10]. There exist heuristic algorithms

which colour a graph in polynomial time using relatively few colours, albeit

not achieving an optimal colouring. One of the most common polynomial

colouring algorithms is First-Fit, also known as greedy colouring. In its

sequential form, First-Fit visits every vertex and assigns the smallest colour

available, i.e. not already assigned to one of the vertex’s neighbours. The

procedure is summarised in Algorithm 8.

It is easy to give an upper bound on the number of colours used by the

greedy algorithm. Let us assume that the highest-degree vertex Vh in a

graph has degree d, i.e. this vertex has d neighbours. In the worst case,

each neighbour has been assigned a unique colour; then one of the colours

{1, 2, . . . , d + 1} will be available to Vh (i.e. not already assigned to a
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Algorithm 8 Sequential greedy colouring algorithm.

Input: G
for all vertices Vi ∈ G do
C ← {colours of all coloured vertices Vj ∈ adj(Vi)}
c(Vi)← {smallest colour 6∈ C}

end for

neighbour). Therefore, the greedy algorithm can colour a graph with at

most d + 1 colours. In fact, experiments have shown that First-Fit can

produce near-optimal colourings for many classes of graphs [24].

5.3 Algorithm by Jones-Plassmann

Jones and Plassmann presented a parallel version of First-Fit in [61]. This

algorithm is based on Luby’s proposal of finding maximal independent sets

of vertices and colouring them in parallel [75]. For the Jones-Plassmann

algorithm we only need to find independent sets, not necessarily maximal

ones. An independent set is constructed in parallel using a Monte Carlo

method. Every vertex is assigned a weight. The weights chosen by Luby are

the result of some random permutation of vertex IDs. An independent set of

uncoloured vertices is then formed in parallel by choosing all vertices whose

weights are local maxima, i.e. larger than the weight of any uncoloured

neighbour.

Vertex IDs are usually dependent on the location of each vertex in the

mesh. In order to get a good permutation we need to shuffle the IDs using

a hash function hf(ID) which maps location-dependent IDs to random

numbers. A hashing function known as a Park and Miller pseudo-random

number generator [91], which in turn is based on work by D. H. Lehmer [69],

is shown in Code Snippet 3. In this function, n is a large prime number and

g is a number of high multiplicative order modulo n [112]. This property

of g guarantees that any ID in the range [0..n) will be mapped to a unique

number, i.e. no two IDs in that range can have the same hash.

Once an independent set has been found, all vertices in it can be coloured

in parallel using the First-Fit principle, i.e. they are given the smallest

colour not already assigned to a neighbour. This procedure is repeated

until all vertices have been coloured. Figure 5.1 shows an example of how
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(f) Round 3

Figure 5.1: Example of colouring a graph using the Jones-Plassmann algo-
rithm. In each round, vertices whose weights are local maxima
among all uncoloured neighbours are coloured in parallel and
are given the smallest colour available.
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1 i n t hash ( i n t vid ){
2 const i n t n = large_prime_number ;
3 const i n t g = number_of_high_multiplicative_order_modulo_n ;
4 r e turn ( vid ∗ g ) % n ;
5 }

Code Snippet 3: Simple hash function using the Park & Miller pseudo-
random number generator.

this algorithm progresses. Algorithm 9 summarises the Jones-Plassmann

colouring method. As can be seen, there are two thread synchronisation

points per iteration of the while-loop. In line with Amdahl’s law, it is only

expected that scalability will be limited unless thread synchronisation is

minimised. In fact, Allwright et al. benchmarked this algorithm both on

SIMD and MIMD parallel systems and reported no speedup at all [7]. Jones

and Plassmann themselves did not claim getting any speedup either [61];

they only mention that “the running time of the heuristic is only a slowly

increasing function of the number of processors used”.

Algorithm 9 Jones-Plassmann parallel colouring algorithm.

Input: G(V,E)
U ← V . set of uncoloured vertices
while |U| > 0 do

#pragma omp parallel for
for all vertices Vi ∈ U do
I ← {all Vi for which w(Vi) > w(Vj) ∀Vj ∈ adj(Vi)}

end for
#pragma omp barrier . synchronise threads

#pragma omp parallel for
for all vertices Vi ∈ I do . colour them using First-Fit
C ← {colours of all coloured vertices Vj ∈ adj(Vi)}
c(Vi)← {smallest colour 6∈ C}
U ← U − Vi . remove from set of uncoloured vertices

end for
#pragma omp barrier . synchronise threads

end while
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5.4 Algorithm by Jones-Plassmann with Multiple

Hashes

Taking Jones-Plassmann colouring a step further, we can eliminate the need

for thread synchronisation by using more than one weights for vertices.

This idea was presented at the 2012 Nvidia GPU Technology Conference

by Jonathan Cohen and Patrice Castonguay. One way to compute multi-

ple weights is by using many different hash functions hf0(ID), hf1(ID),

. . . , hfn−1(ID) or, alternatively, we can keep re-hashing the computed

weights multiple times using a single hash function hf(ID), i.e. compute

hf(hf(hf(. . . hf(ID) . . . ))). The idea is that we keep computing weights

with different hash functions (resp. keep re-hashing the weights) until we

reach the point where the vertex under consideration has got the high-

est weight in its neighbourhood. If the local maximum is reached using

hfk(ID), k ∈ [0, n − 1) (resp. by re-hashing the weight for k times), then

the vertex can be immediately assigned colour k, independently from the

colours of neighbours.

The whole procedure can be seen in Algorithm 10. A thread colouring

a vertex does not examine whether a neighbour has been coloured; it only

examines the hashes. Therefore, it is obvious that this version of the Jones-

Plassmann algorithm is even more parallel with no thread synchronisation

at all. An interesting application of this colouring algorithm would be in a

distributed-memory system where some global vertex numbering has been

set up beforehand. By hashing global vertex IDs instead of local ones we

can get consistent colouring across participating processors with no com-

munication at all.

Algorithm 10 Jones-Plassmann colouring with multiple hash functions.

Input: G(V,E), set of hash functions hf0, hf1, . . . , hfn−1
#pragma omp parallel for
for all vertices Vi ∈ G do

k ← 0
. keep probing different hfk while weight(Vi) is not local maximum

while ∃Vj ∈ adj(Vi) for which hfk(Vj) > hfk(Vi) do
k ← k + 1

end while
c(Vi)← k . assign colour k to vertex

end for
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On the other hand, the algorithm deviates from the First-Fit principle,

since the colour assigned to a vertex is not the smallest available but depends

solely on some local configuration of hashes. An immediate consequence is

that the upper bound on the number of colours given in §5.2 does not apply

in this case. In fact, our experimental results revealed that this algorithm

leads to unjustifiably large numbers of used colours, around an order of

magnitude higher than the ones delivered by the parallel variants of First-

Fit. Having too many colours reduces the amount of exposed parallelism

in adaptive mesh algorithms and exaggerates the overhead of thread syn-

chronisation (as was described in Section 4.1, there needs to be some global

reduction after processing an independent set, which translates to thread

synchronisation in shared-memory systems).

5.5 Algorithm by Gebremedhin-Manne

Gebremedhin and Manne took a different approach to parallelising the

greedy graph colouring algorithm. In [47] they describe a fast and scal-

able greedy colouring technique for shared-memory systems based on the

principles of speculative (or optimistic) execution. The idea is that we can

colour all vertices in parallel using First-Fit without caring for race condi-

tions at first; this can lead to defective colouring, i.e. two adjacent vertices

might get the same colour. Defects can be spotted and fixed at a later stage.

The exact method can be seen in Algorithm 11. The process comprises

three stages: pseudo-colouring, conflict detection and conflict resolution.

During the first stage, every thread colours vertices as if it was working

alone, i.e. the thread visits a subset of the graph and applies the sequential

greedy colouring algorithm to all vertices of that subset without caring about

race conditions. Consequently, it is possible that two threads may attempt

to colour adjacent vertices simultaneously and give them the same colour,

therefore producing an invalid colouring, known as pseudo-colouring. In the

second stage, threads visit all graph vertices again (in parallel) and check

for conflicts. If two adjacent vertices have been assigned the same colour,

then one of them (by convention the vertex with the lesser ID) is push back

into a list of conflicting vertices. Finally, a single thread resolves conflicts

by re-colouring those vertices sequentially in the third stage.

The resulting algorithm is highly parallel, since most of the colouring is
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Algorithm 11 Gebremedhin-Manne parallel graph colouring algorithm.

Input: G(V,E)
. Stage 1 - Pseudo-colouring (in parallel)

#pragma omp parallel for
for all vertices Vi ∈ G do . colour them using First-Fit
C ← {colours of all coloured vertices Vj ∈ adj(Vi)}
c(Vi)← {smallest colour 6∈ C}

end for
#pragma omp barrier

. Stage 2 - Conflict detection (in parallel)
L ← ∅ . global list of defectively coloured vertices
#pragma omp parallel for
for all vertices Vi ∈ G do

if ∃Vj ∈ adj(Vi) : c(Vi) == c(Vj) and id(Vi) < id(Vj) then
L ← L ∪ Vi . mark Vi as defectively coloured

end if
end for
#pragma omp barrier

. Stage 3 - Conflict resolution (serially)
. apply the serial greedy algorithm on all conflicting vertices

for all vertices Vi ∈ L do
C ← {colours of all coloured vertices Vj ∈ adj(Vi)}
c(Vi)← {smallest colour 6∈ C}

end for

done optimistically in a synchronisation-free and lock-free fashion. There

is a major weakness, however, in this algorithm which lies in the explicitly

sequential stage at the end. The workload during this stage depends on the

amount of defectively coloured vertices. As the number of threads increases,

it is only expected that the amount of conflicts increases as well, therefore

exaggerating the penalty of the sequential stage on the algorithm’s scala-

bility. In their original experiments, Gebremedhin and Manne confirmed

this assumption and their benchmarks on various graphs showed a parallel

efficiency which drops below 75% when using 12 OpenMP threads. As we

enter the manycore era, a more parallel approach has to be pursued.

5.6 Algorithm by Çatalyürek et al.

Picking up where Gebremedhin and Manne left off, Çatalyürek et al. im-

proved the original algorithm by removing the third sequential stage and
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applying the first two stages iteratively. This work was presented in [20].

Each of the two phases, called tentative colouring phase and conflict de-

tection phase respectively, is executed in parallel over a relevant set of ver-

tices. Like the original algorithm by Gebremedhin and Manne, the tentative

colouring phase produces a pseudo-colouring of the graph, whereas in the

conflict detection phase threads identify defectively coloured vertices and

append them into a list L. Instead of resolving conflicts in L serially, L now

forms the new set of vertices over which the next execution of the tentative

colouring phase will iterate. This process is repeated until no conflicts are

encountered.

Algorithm 12 The parallel graph colouring algorithm technique by
Çatalyürek et al..

Input: G(V,E)
U ← V
while U 6= ∅ do

. Phase 1 - Tentative colouring (in parallel)
#pragma omp parallel for
for all vertices Vi ∈ U do . colour them using First-Fit
C ← {colours of all coloured vertices Vj ∈ adj(Vi)}
c(Vi)← {smallest colour 6∈ C}

end for
#pragma omp barrier

. Phase 2 - Conflict detection (in parallel)
L ← ∅ . global list of defectively coloured vertices
#pragma omp parallel for
for all vertices Vi ∈ U do

if ∃Vj ∈ adj(Vi) : c(Vi) == c(Vj) and id(Vi) < id(Vj) then
L ← L ∪ Vi . mark Vi as defectively coloured

end if
end for
#pragma omp barrier
U ← L . Set of vertices to be coloured in the next round

end while

Algorithm 12 summarises this colouring method. As can be seen, there is

no sequential part in the whole process. This trait constitutes a significant

improvement over Gebremedhin-Manne in terms of the algorithm’s ability

to keep scaling as the number of threads rises. Additionally, speed does not

come at the expense of colouring quality. The authors have demonstrated
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that this algorithm produces colourings using about the same amount of

colours as the serial greedy algorithm (there is a negligible deviation from

the serial results for some graphs). As is stated in their original publication,

“the increase in number of colours with an increase in concurrency is none

to modest”. However, there is still a source of sequentiality, namely the two

thread synchronisation points in every iteration of the while-loop. Thread

synchronisation can easily become a barrier for scalability and should be

minimised or eliminated if possible.

5.7 An Improved Algorithm

Moving toward the direction of removing as much thread synchronisation

as possible, we managed to improve the algorithm by Çatalyürek et al. by

eliminating one of the two barriers inside the while-loop. This was achieved

by merging the two parallel for-loops inside the while-loop into a single

parallel for-loop. We observed that when a vertex is found to be defective,

it can be re-coloured immediately instead of deferring its re-colouration for

the next round. Therefore, the tentative-colouring phase and the conflict-

detection phase can be combined into a single detect-and-recolour phase.

Doing so leaves only one thread synchronisation point in every iteration of

the while-loop, as can be seen in Algorithm 13.

It would be ideal to be able to remove all thread synchronisation com-

pletely. We believe, however, that this is not possible beyond the point we

have reached and we claim that our improved technique presented here is

both the fastest and the most scalable among its competitors in the family

of parallel greedy graph colouring algorithms, while being one of the best

examples of what speculative execution can offer when used in algorithms

operating on irregular data structures.

5.8 Experimental Results

In order to evaluate our new colouring method and compare it to the pre-

vious state-of-the-art technique by Çatalyürek et al. we ran a series of

benchmarks using 2D finite element meshes and 3D finite volume meshes,

alongside randomly generated graphs using the R-MAT graph generation

algorithm [21]. Simplicial 2D/3D meshes are used in order to measure per-
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Algorithm 13 Our improved parallel graph colouring technique based on
the algorithm by Çatalyürek et al..

Input: G(V,E)
. perform tentative colouring on G; round 0

#pragma omp parallel for
for all vertices Vi ∈ G do
C ← {colours of all coloured vertices Vj ∈ adj(Vi)}
c(Vi)← {smallest colour 6∈ C}

end for
#pragma omp barrier
U0 ← V . mark all vertices for inspection
i← 1 . round counter
while U i−1 6= ∅ do . ∃ vertices (re-)coloured in the previous round
L ← ∅ . global list of vertices found to be defectively coloured
#pragma omp parallel for
for all vertices Vi ∈ U i−1 do . i.e. (re-)coloured in round i− 1

. if they are (still) defective, re-colour them immediately
if ∃Vj ∈ adj(Vi) : c(Vi) == c(Vj) and id(Vi) < id(Vj) then
C ← {colours of all coloured vertices Vj ∈ adj(Vi)}
c(Vi)← {smallest colour 6∈ C}
L ← L ∪ Vi . Vi has been re-coloured in this round

end if
end for
#pragma omp barrier
Ui ← L . Set of vertices to be inspected in the next round
i← i+ 1 . proceed to next round

end while

formance and scalability on the kind of graphs we are mostly interested in,

whereas RMAT graphs were used so that we are in line with the experimen-

tal methodology used in Çatalyürek’s publication; the authors state that

those RMAT graphs “are designed to represent instances posing varying lev-

els of difficulty for the performance of multithreaded colouring algorithms”.

For the 2D case we have used the adapted 2D mesh presented later in

Section 6.5, named bench_2d, which consists of ≈ 250k vertices. This case

gives a direct insight into how our improved method performs within PRAg-

MaTIc. We also evaluate performance using two 3D meshes, taken from the

University of Florida Sparse Matrix Collection [30]. bmw3_2 is a mesh mod-

elling a BMW Series 3 car consisting of ≈ 227k vertices, whereas pwtk

represents a pressurised wind tunnel and consists of ≈ 218k vertices.
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Finally, we have generated three 16M -vertex, 128M -edge RMAT graphs

in accordance with [20]. The RMAT algorithm generates a graph G(V,E)

as follows. The adjacency matrix of G, initially empty, is divided itera-

tively into four quadrants. Edges are distributed within the quadrants with

specific probabilities (a, b, c, d), which sum up to 1. For every edge, the

algorithm places it in one of the four quadrants with probabilities (a, b, c,

d). The chosen quadrant is then subdivided into four new sub-quadrants

and this process is repeated until we land onto a single cell, so an edge is

created connecting the corresponding vertices.

The three RMAT graphs we use for our benchmarks are called RMAT-ER

(Erdős-Rényi), RMAT-G (Good) and RMAT-B (Bad). They are generated using

the following sets of probabilities:

• RMAT-ER: (0.25, 0.25, 0.25, 0.25)

• RMAT-G: (0.45, 0.15, 0.15, 0.25)

• RMAT-B: (0.55, 0.15, 0.15, 0.15)

Vertex indices are shuffled randomly so as to reduce the benefits of data

locality and large caches. For more information on the characteristics of

those graphs the reader is referred to the original publication by Çatalyürek

et al. [20].

The experiments were run on two systems: a dual-socket Intel R©Xeon R©

E5-2650 system (Sandy Bridge, 2.00GHz, 8 physical cores per socket, 2-way

hyper-threading per core, 32 threads in total) running Red Hat R©Enterprise

Linux R© Server release 6.4 (Santiago) and an Intel R©Xeon Phi
TM

5110P board

(1.053GHz, 60 physical cores, 4-way hyper-threading per core, 240 threads

in total). Both versions of the code (intel64 and mic) were compiled with

Intel R©Composer XE 2013 SP1 and with the compiler flags -O3 -xAVX. The

benchmarks were run using Intel R©’s thread-core affinity support.

In our experiments we compare the new improved method, henceforth

referred to as “Rokos et al.”, with the one by Çatalyürek et al., since the

latter is the up-to-now state-of-the-art greedy colouring algorithm. The

rest of the algorithms are of little interest nowadays and the corresponding

results have been omitted. Jones-Plassmann has been surpassed by newer

innovations (i.e. optimistic algorithms), whereas its multi-hash version was

found to produce very bad colourings, using on average 5-10 times more
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colours than the rest of the algorithms presented in this chapter. Finally,

Gebremedhin-Manne is just the predecessor to Çatalyürek et al., with the

latter being an optimised, better performing version of the former.

Figure 5.2 shows the total execution time on Intel R©Xeon R© for both al-

gorithms to colour the three meshes bench_2d, bmw3_2 and pwtk, whereas

Figure 5.3 shows the execution time for the three RMAT graphs. Figures 5.4

and 5.5 show the corresponding achievable speedup over the single-threaded

case as the number of thread increases. Figures 5.6, 5.7, 5.8 and 5.9 present

the same benchmarks on Intel R©Xeon Phi
TM

. As can be seen, Rokos et al.

performs faster than Çatalyürek et al. for every test graph on both plat-

forms, while scaling significantly better as the number of threads increases,

especially on Intel R©Xeon Phi
TM

.

Figures 5.10 and 5.11 show the relative speedup of Rokos over Çatalyürek

for all test graphs on Intel R©Xeon R© and Intel R©Xeon Phi
TM

, respectively.

The gap between the two algorithms widens with the number of threads,

reaching a maximum value of 50% on Intel R©Xeon Phi
TM

for RMAT-B.
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Figure 5.2: Execution time on Intel R©Xeon R© E5-2650 (meshes).

Figure 5.12 depicts the total number of conflicts detected throughout the

whole execution of both algorithms for the three meshes on Intel R©Xeon R©
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Figure 5.3: Execution time on Intel R©Xeon R© E5-2650 (RMAT).
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Figure 5.4: Speedup over single-threaded execution on Intel R©Xeon R© E5-
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Figure 5.6: Execution time on Intel R©Xeon Phi
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5110P (meshes).
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Figure 5.10: Speedup of Rokos over Çatalyürek on Intel R©Xeon R© E5-2650.
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Figure 5.11: Speedup of Rokos over Çatalyürek on Intel R©Xeon Phi
TM

5110P.

and Figure 5.13 shows the corresponding measurements for the RMAT

graphs. Similarly, Figures 5.14 and 5.15 present the same information on

Intel R©Xeon Phi
TM

. When the number of threads is low, both algorithms

produce more or less the same amount of conflicts. However, moving to

higher levels of parallelism on Intel R©Xeon Phi
TM

reveals that Rokos et al.

results to significantly fewer defects in colouring for certain classes of graphs.

This observation can be explained as follows: In Çatalyürek et al., when

a thread detects a defect in colouring during the tentative-colouring phase,

it appends the problematic vertex into a global worklist. Before entering

the conflict-resolution phase, all participating threads synchronise, which

means that they enter that phase and start resolving conflicts at the very

same time. Therefore, it is highly possible that two adjacent vertices with

conflicting colours will be processed by two threads simultaneously, which

leads once again to defective colourings. In our improved algorithm, on

the other hand, a conflict is resolved as soon as it is discovered by a thread.

The likelihood that another thread is visiting and recolouring a neighbouring

vertex at the same time is certainly lower than in Çatalyürek et al..
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Figure 5.12: Number of conflicts on Intel R©Xeon R© E5-2650 (meshes).
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Figure 5.13: Number of conflicts on Intel R©Xeon R© E5-2650 (RMAT).
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Figure 5.14: Number of conflicts on Intel R©Xeon Phi
TM

5110P (meshes).
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Figure 5.15: Number of conflicts on Intel R©Xeon Phi
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5110P (RMAT).
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The reduced amount of conflicts also results in fewer iterations of the

algorithm, as can be seen in Figures 5.16 and 5.17 for Intel R©Xeon R© and

Figures 5.18 and 5.19 for Intel R©Xeon Phi
TM

. Taking into account that

every iteration of the while loop in Rokos et al. involves only one thread

synchronisation point as opposed to two in Çatalyürek et al., it is only

expected that our new algorithm ultimately outperforms its predecessor.

A nice property is that both algorithms produce colourings using the same

number of colours, i.e. quality of colouring is not compromised by the higher

execution speed.
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Figure 5.16: Number of iterations on Intel R©Xeon R© E5-2650 (meshes).

5.9 SIMT restrictions

Trying to run the optimistic colouring algorithms on CUDA revealed a po-

tential weakness. Both the algorithm by Çatalyürek et al. and our improved

version never ran to completion; instead, threads spun forever in an infinite

loop. This is due to the nature of SIMT-style multi-threading, in which the

lockstep warp execution results in ties never being broken.

An example of why these algorithms result in infinite loops in SITM-style
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Figure 5.17: Number of iterations on Intel R©Xeon R© E5-2650 (RMAT).
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Figure 5.18: Number of iterations on Intel R©Xeon Phi
TM

5110P (meshes).
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Figure 5.19: Number of iterations on Intel R©Xeon Phi
TM

5110P (RMAT).

parallelism can be seen in Figure 5.20, where we have a simple two-vertex

graph and two threads, each processing one vertex. Colour ordering is the

same as in Figure 5.1, i.e. {red, green, yellow, blue, . . . }. At the beginning

(a), both vertices are uncoloured. Each thread sees that the adjacent vertex

is uncoloured and decides that the smallest colour available for its own

vertex is red. Both threads commit their decision at the exact same clock

cycle, which results in the defective colouring shown in (b). In the next

round, both threads detect the conflict by reading the neighbour’s colour

at the same clock cycle and try to resolve it. Both threads decide that the

new smallest colour available is green and assign it to their vertices at the

same clock cycle, resulting once again in defects (c). Next up, the conflict

is detected, each thread finds out that the smallest colour available for its

vertex is red, the colour is committed by both threads at the same clock

cycle and the process goes on forever.

Theoretically, this scenario is possible for CPUs as well, although the

probability is extremely low. Predictions are impossible to make, as conver-

gence rate depends on too many factors (graph structure, data types used,

processor speed, memory latency, memory bandwidth, number of threads,
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(a) Initial graph
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(b) Round 1
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Figure 5.20: Example of an infinite loop in SITM-style parallelism when
using one of the optimistic colouring algorithms.

interference from the operating system etc.). Nonetheless, we believe that

there will always be some randomness and thread divergence on CPUs which

guarantees convergence of the optimistic algorithms.

5.10 Conclusions

In this chapter we presented various parallel graph colouring algorithms

and showed how we devised an improved version which outperforms its

competitors, being up to 50% faster than the runner up for certain classes

of graphs and scaling better on manycore architectures. The difference

becomes more obvious as we move to graphs with higher-degree vertices

(3D meshes, RMAT-B graph).

This observation also implies that our method (with the appropriate ex-

tensions) could be a far better option for 2-distance colourings of a graph G,

where G2, the 2nd power graph of G, is considerably more densely connected.

(The graph Gd, the dth power graph of G, has the same vertex set as G and

two vertices in Gd are connected by an edge if and only if the same vertices

are within distance d in G.)

Speed and scalability stem from two sources, (a) reduced amount of con-

flicts which also results in fewer iterations and (b) reduced thread synchroni-

sation per iteration. Colouring quality remains at the same levels as in older

parallel algorithms, which in turn are very close to the serial greedy algo-

rithm, meaning that they produce near-optimal colourings for most classes

of graphs.
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6 Threaded Implementation of

Mesh Adaptivity

In this chapter we present how the four adaptive algorithms described in

Chapter 2, namely coarsening, refinement, swapping and smoothing, are

parallelised and implemented in PRAgMaTIc using the irregular compute

methodology analysed in Chapter 4.

6.1 Edge Coarsening

Because any decision on whether to collapse an edge is strongly dependent

upon what other edges are collapsing in the immediate neighbourhood of el-

ements, an operation task graph for coarsening has to be constructed. Edge

collapse is based on the removal of vertices, i.e. the elemental operation

for edge collapse is the removal of a vertex. Therefore, the operation task

graph G is the mesh itself.

In Section 4.4, Figure 4.2 demonstrated what needs to be taken into ac-

count in order to perform parallel coarsening safely. It is clear that adjacent

vertices cannot collapse concurrently, so a distance-1 colouring of the mesh

is sufficient in order to avoid structural hazards. This colouring also enforces

processing of vertices topologically at least every other one which prevents

skewed elements forming during significant coarsening [31, 71].

An additional consideration is that vertices which are two edges away

from each other share some common vertex Vcommon. Removing both ver-

tices at once means that Vcommon’s adjacency list will have to be modified

concurrently by two different threads, leading to data races. These races

can be avoided using the deferred operations mechanism.

Algorithm 14 illustrates a thread parallel version of mesh edge collapse.

Coarsening is divided into two phases: the first sweep through the mesh

identifies what edges are to be removed, see Algorithm 15; and the second
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Algorithm 14 Edge collapse.

Allocate dynamic vertex,worklist.
#pragma omp parallel

#pragma omp for schedule(static)
for all vertices Vi do dynamic vertex[Vi]← −2
end for
repeat

#pragma omp for schedule(guided)
for all vertices Vi do

if dynamic vertex[Vi] == −2 then
dynamic vertex[Vi]←coarsen identify(Vi)

end if
end for
if dynamic vertex count == 0 then break
end if
Colour active sub-mesh
for all independent sets In do

#pragma omp for schedule(guided)
for all Vi ∈ In do

if Vi has been un-coloured then skip Vi
end if

. mark all neighbours for re-evaluation
for all vertices Vj ∈ NNList[Vi] do

dynamic vertex[Vj ]← −2
end for
if colour of target Vt clashes then un-colour Vt
end if
dynamic vertex[Vi]← −1
coarsen kernel(Vi)

end for
Commit deferred operations.

end for
until true

phase actually applies the coarsening operation, see Algorithm 16. Function

coarsen identify(Vi) takes as argument the ID of a vertex Vi, decides whether

any of the adjacent edges can collapse and returns the ID of the target vertex

Vt onto which Vi should collapse (or a negative value if no adjacent edge can

be removed). coarsen kernel(Vi) performs the actual collapse, i.e. removes

Vi from the mesh, updates vertex adjacency information and removes the
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Algorithm 15 coarsen identify

procedure coarsen identify(Vi)
Si ← the set of all edges connected to Vi
S0 ← Si
repeat

Ej ← shortest edge in Sj

if length of Ej > Lmin then . if shortest edge is of acceptable
return -1 . length, no edge can be removed

end if
Vt ← the other vertex that bounds Ej
evaluate collapse of Ej with the collapse of Vi onto Vt
if (∀ edges ∈ Si ≤ Lmax) and(6 ∃ inverted elements) then

return Vt
else

remove Ej from Sj . Ej is not a candidate for collapse
end if

until Si = ∅
end procedure

two deleted elements from the element list.

Parallel coarsening begins with the initialisation of array dynamic vertex

which is defined as:

dynamic vertex[Vi] =


−1 Vi cannot collapsed,

−2 Vi must be re-evaluated,

Vt Vi is about to collapse onto Vt.

At the beginning, the whole array is initialised to -2, so that all mesh vertices

will be considered for collapse.

In each iteration of the outer coarsening loop, coarsen identify kernel

is called for all vertices which have been marked for (re-)evaluation. Every

vertex for which dynamic vertex[Vi] ≥ 0 is said to be dynamic or active.

At this point, a reduction in the total number of active vertices is necessary

to determine whether there is anything left for coarsening or the algorithm

should exit the loop.

Next up, we colour what we call the active sub-mesh, i.e. the subset of all

active vertices, and create independent sets In. Working with independent

sets not only ensures safe parallel execution, but also enforces the every other

vertex rule. For every active vertex Vr ∈ In which is about to collapse, the
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Algorithm 16 Coarsen kernel with deferred operations

procedure coarsen kernel(Vi)
Vt ← dynamic vertex[Vi]
removed elements← NEList[Vi] ∩ NEList[Vt]
common patch← NNList[Vi] ∩ NNList[Vt]
for all Ei ∈ removed elements do

Vo ← the other vertex of Ei = ̂ViVtVo
NEList[Vo].erase(Ei) . deferred operation
NEList[Vt].erase(Ei) . deferred operation
NEList[Vi].erase(Ei)
ENList[3*Ei] ← −1 . erase element by resetting its first vertex

end for
for all Ei ∈ NEList[Vi] do

replace Vi with Vt in ENList[3*Ei+{0,1,2}]
NEList[Vt].add(Ei) . deferred operation

end for
remove Vi from NNList[Vt] . deferred operation
for all Vc ∈ common patch do

remove Vi from NNList[Vc] . deferred operation
end for
for all Vn 6∈ common patch do

replace Vi with Vt in NNList[Vn]
add Vn to NNList[Vt] . deferred operation

end for
NNList[Vi].clear()
NEList[Vi].clear()

end procedure

local neighbourhood of all vertices Va formerly adjacent to Vr changed and

target vertices dynamic vertex[Va] may not be suitable choices any more.

Therefore, when Vr is erased, all its neighbours are marked for re-evaluation.

This is how propagation of coarsening is implemented. Additionally, removal

of Vr may introduce defects in colouring between the target vertex Vt (the

one Vr collapses onto) and all other vertices Va of the local neighbourhood.

In this case, Vt is un-coloured and will be skipped when processing the

independent set it belongs to. Vt remains marked as active, so will be

processed in a subsequent iteration of coarsening.

Algorithm 16 describes how the actual coarsening takes place in terms

of modifications to mesh data structures. Updates which can lead to race

conditions have been pointed out. These updates are deferred until the end
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of processing of the independent set. Before moving to the next set, all

deferred operations are committed.

6.2 Element Refinement

Every edge can be processed and refined without being affected by what hap-

pens to adjacent edges. Being free from structural hazards, the only issue

we are concerned with is thread safety when updating mesh data structures.

Refining an edge involves the addition of a new vertex to the mesh. This

means that new coordinates and metric tensor values have to be appended to

coords and metric and adjacency information in NNList has to be updated.

The subsequent element split leads to the removal of parent elements from

ENList and the addition of new ones, which, in turn, means that NEList

has to be updated as well. Appending new coordinates to coords, metric

tensors to metric and elements to ENList is done using the thread worklist

strategy described in Section 4.5, while updates to NNList and NEList can

be handled efficiently using the deferred operations mechanism.

The two stages, namely edge refinement and element refinement, of our

threaded implementation are described in Algorithm 17 and Algorithm 18,

respectively. The procedure begins with the traversal of all mesh edges.

Edges are accessed using NNList, i.e. for each mesh vertex Vi the algorithm

visits Vi’s neighbours. This means that edge refinement is a directed oper-

ation, as edge ViVj is considered to be different from edge VjVi. Processing

the same physical edge twice is avoided by imposing the restriction that we

only consider edges for which Vi’s ID is less than Vj ’s ID. If an edge is found

to be longer than desired, then it is split in the middle (in metric space) and

a new vertex Vn is created. Vn is associated with a pair of coordinates and

a metric tensor. It also needs an ID. At this stage, Vn’s ID cannot be de-

termined. Once an OpenMP thread exits the edge refinement phase, it can

proceed (without synchronisation with the other threads) to fix vertex IDs

and append the new data it created to the mesh. The thread captures the

number of mesh vertices index = NNodes and increments it atomically by

the number of new vertices it created. After capturing the index, the thread

can assign IDs to the vertices it created and also copy the new coordinates

and metric tensors into coords and metric, respectively.

Before proceeding to element refinement, all split edges are accumulated
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Algorithm 17 Edge-refinement.

Global worklist of split edges W, refined edges per element[NElements]
#pragma omp parallel

private : split cnt← 0, newCoords, newMetric, newV ertices
#pragma omp for schedule(guided)
for all vertices Vi do

for all vertices Vj adjacent to Vi, ID(Vi) < ID(Vj) do
if length of edge ViVj > Lmax then

Vn ← new vertex of split edge ViVnVj
Append new coordinates to newCoords
Append interpolated metric to newMetric
Append split edge to newV ertices
split cnt← split cnt+ 1

end if
end for

end for
#pragma omp atomic capture

index← NNodes
NNodes← NNodes+ splint cnt

Copy newCoords into coords, newMetric into metric

for all edges ei ∈ newV ertices do
ei = ViVnVj ; increment ID of Vn by index

end for
Copy newV ertices into W
#pragma omp barrier
#pragma omp parallel for schedule(guided)
for all Edges ei ∈ W do

Replace Vj with Vn in NNList[Vi];
Replace Vi with Vn in NNList[Vj]
Add Vi and Vj to NNList[Vn]
for all elements Ei ∈ {NEList[Vi] ∩NEList[Vj ]} do

Mark edge ei as refined in refined edges per element[Ei].
end for

end for

into a global worklist. For each split edge ViVj , the original vertices Vi and

Vj have to be connected to the newly created vertex Vn. Updating NNList

for these vertices cannot be deferred. Most edges are shared between two

elements, so if the update was deferred until the corresponding elements

were processed, we would run the risk of committing these updates twice,
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once for each element sharing the edge. Updates can be committed imme-

diately, as there are no race conditions when accessing NNList at this point.

Besides, for each split edge we find the (usually two) elements sharing it.

For each element, we record that this edge has been split. Doing so makes

element refinement much easier, because as soon as we visit an element we

will know immediately how many and which of its edges have been split.

An array of length NElements stores this type of information.

Algorithm 18 Element refinement phase

#pragma omp parallel
private : newElements
#pragma omp for schedule(guided)
for all elements Ei do

refine element(Ei)
Append additional elements to newElements.

end for
Resize ENList.
Parallel copy of newElements into ENList.

During mesh refinement, elements are visited in parallel and refined in-

dependently. It should be noted that all updates to NNList and NEList are

deferred operations. After finishing the loop, each thread uses the worklist

method to append the new elements it created to ENList. Once again, no

thread synchronisation is needed.

This parallel refinement algorithm has the advantage of not requiring any

mesh colouring and having low synchronisation overhead as compared with

Freitag’s task graph approach.

6.3 Edge Swapping

The data dependencies in edge swapping are virtually identical to those of

edge coarsening. Therefore, it is possible to reuse the same thread parallel

algorithm as for coarsening with slight modifications.

In order to avoid maintaining edge-related data structures (e.g. edge-

node list, edge-edge adjacency lists etc.), an edge can be expressed in terms

of a pair of vertices. Just like in refinement, we define an edge Eij as a pair

of vertices (Vi, Vj), with ID(Vi) < ID(Vj). We say that Eij is outbound
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from Vi and inbound to Vj . Consequently, the edge Eij can be marked

for swapping by adding Vj to marked edges[Vi]. Obviously, a vertex Vi can

have more than one outbound edge, so unlike dynamic vertex in coarsening,

marked edges is a vector of sets (std::vector< std::set<int> >).

The algorithm begins by marking all edges. It then enters a loop which is

terminated when no marked edges remain. The active sub-mesh is coloured

and independent sets In are calculated. A vertex is considered active if at

least one of its outbound edges is marked. Following that, threads process in

parallel all active vertices of an independent set In. The thread processing

vertex Vi visits all edges in marked edges[Vi] one after the other and exam-

ines whether they can be swapped, i.e. whether the operation will improve

the quality of the two elements sharing that edge. It is easy to see that

swapping two edges in parallel which are outbound from two independent

vertices involves no structural hazards.

Propagation of swapping is similar to that of coarsening. Consider the

local patch in Figure 2.10 and assume that a thread is processing vertex

V0. If edge V0V1 is flipped, the two elements sharing that edge change in

shape and quality, so all four edges surrounding those elements (forming

the rhombus V0V1V2V3) have to be marked for processing. This is how

propagation is implemented in swapping.

One last difference between swapping and coarsening is that an indepen-

dent set In needs to be traversed more than once before proceeding to the

next one. In the same example as above, assume that all edges adjacent to

V0 are outbound and marked. If edge V0V1 is flipped, adjacency information

for V1, V2 and V3 has to be updated. These updates have to be deferred

because another thread might try to update the same lists at the same

time (e.g. the thread processing edge VCV1). However, not committing the

changes immediately means that the thread processing V0 has a stale view

of the local patch. More precisely, NEList[V2] and NEList[V3] are invalid

and cannot be used to find what elements edges V0V2 and V0V3 are part

of. Therefore, these two edges cannot be processed until the deferred oper-

ations have been committed. On the other hand, the rest of V0’s outbound

edges are free to be processed. Once all threads have processed whichever

edges they can for all vertices of the independent set, deferred operations

are committed and threads traverse the independent set again (up to two

more times in 2D) to process what had been skipped before.
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6.4 Quality-Constrained Vertex Smoothing

Algorithm 19 illustrates the colouring based algorithm for mesh smooth-

ing. In this algorithm the operation task graph G(V, E) consists of sets of

vertices V and edges E that are defined by the vertices and edges of the

computational mesh. By computing a vertex colouring of G we can define

independent sets of vertices, Vc, where c is a computed colour. Thus, all

vertices in Vc, for any c, can be updated concurrently without any race con-

ditions on dependent data. This is clear from the definition of the smoothing

kernels in Section 2.6.4.

Algorithm 19 Thread-parallel mesh smoothing
repeat

relocate count← 0
for colour = 1→ k do

#pragma omp for schedule(guided)
for all i ∈ Vc do

. move success is true if vertex was relocated,
move success← smooth kernel(i) . false otherwise.
if move success then

relocate count← relocate count+ 1
end if

end for
end for

until (n ≥ max iteration)or(relocate count = 0)

6.5 Experimental Results

In order to evaluate the parallel performance, an isotropic mesh was gen-

erated on the unit square with using approximately 200 × 200 vertices. A

synthetic solution ψ is defined to vary in time and space:

ψ(x, y, t) = 0.1 sin

(
50x+

2πt

T

)
+ arctan

(
− 0.1

2x− sin
(
5y + 2πt

T

)) (6.1)

where T is the period. An example of the field at t = 0 is shown in Figure

6.1. This is a good choice as a benchmark as it contains multi-scale features

and a shock front. These are the typical solution characteristics where
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anisotropic adaptive mesh methods excel. Figure 6.2 shows the adapted

mesh in which every element is coloured depending on its quality, as can

be seen in the legend. A magnified region around the lower sinusoidal front

demonstrating the variation of element quality in higher detail can be seen

in Figure 6.3.

Figure 6.1: Benchmark solution field for time step t0.

Because mesh adaptation has a very irregular workload we simulate a time

varying scenario where t varies from 0 to 51 in increments of unity and we

use the aggregated time when reporting performance results. To calculate

the metric we used the Lp=2-norm as described by [22]. The number of mesh

vertices and elements maintains an average of approximately 250k and 500k

respectively. As the field evolves all of the adaptive operations are heavily

used, thereby giving an overall profile of the execution time.

In order to demonstrate the correctness of the adaptive algorithm we plot

a histogram (Figure 6.4) showing the quality of all elements aggregated over

all time steps. We can see that the vast majority of the elements are of very

high quality. The lowest quality element had a quality of 0.51, and in total

only 40 thousand elements out of 26 million have a quality of less than 0.6.

The benchmarks were run on a dual-socket Intel R©Xeon R© E5-2650 system
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Figure 6.2: Quality of adapted mesh for time step t0. As can be seen in the
legend, red elements are low-quality ones whereas blue elements
are of higher-quality (close to ideal).

Figure 6.3: Magnification of mesh from Figure 6.2 around the lower region
of the sinusoidal front, demonstrating the variation of element
quality in this highly anisotropic area.
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Figure 6.4: Histogram of all element quality aggregated over all time steps.

(Sandy Bridge, 2.00GHz, 8 cores per socket, 2-way hyper-threading per core

). The code was compiled using the Intel compiler suite, version 14.0.1 and

with the compiler flags -O3 -xAVX. In all cases, thread-core affinity was

used.

Figures 6.5, 6.6 and 6.7 show the wall time, speedup and efficiency of

each phase of mesh adaptation and for the overall procedure (sum of the

four adaptive algorithms and mesh defragmentation, a necessary process-

ing step to deal with gaps in data structures as a result of element/node

deletion during coarsening). Simulations using between 1 and 8 threads are

run on a single socket with every thread running on its own exclusive core.

The 16-thread simulation runs across two CPU sockets (8 cores per socket,

1 thread per core), thereby incurring NUMA overheads. Finally, the sim-

ulation marked as 32(HT) on the diagrams is the NUMA simulation with

hyper-threading enabled (2 threads per core), using all 32 hardware threads

available in the system. From the results we can see that all operations

achieve good scaling, including the 16-core NUMA case.

It is notable that PRAgMaTIc needs ≈ 1.5s for each time step when using
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Figure 6.5: Wall time for each phase of mesh adaptation.
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Figure 6.6: Speedup profile for each phase of mesh adaptation.
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Figure 6.7: Parallel efficiency profile for each phase of mesh adaptation.

all available hardware resources of the dual-socket Intel R©Xeon R© machine.

This is relatively low compared to typical solution times for CFD problems,

for example [citation pending].

Figure 6.8 shows a comparison of the execution time per adaptive ker-

nel between the aforementioned Intel R©Xeon R© system and an Intel R©Xeon

Phi
TM

7120P board (1.238GHz, 61 physical cores, 4 hyperthreads per core,

244 threads in total). Code for Intel R©Xeon Phi
TM

was compiled with the

same compiler and optimisation flags as the Sandy-Bridge version. The

figure shows results for 61 threads (61 physical cores, no hyperthreading)

and 122 threads (61 physical cores, 2 hyperthreads per core). We are pre-

senting those particular configurations because, whereas performance is im-

proved as we increase the number of threads on Intel R©Xeon Phi
TM

up to

61 (results for fewer threads have been omitted), there is a slowdown for

the swapping kernel when using 122 threads. Additionally, we observed a

tremendous slowdown for all kernels when using 244 threads; we figured out

that OpenMP’s guided scheduling was the cause, which is unrelated to the

parallel implementation of the adaptive algorithms, so the results for this

case have been omitted and will be discussed in Chapter 7.
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TM
.

The comparison of execution times between the two platforms reveals

the dominant factors hindering performance in PRAgMaTIc. Under ideal

circumstances, i.e. using perfectly optimised codes, a 61-core Intel R©Xeon

Phi
TM

would be expected to come close and/or match or even surpass a 16-

core Intel R©Xeon R©, even if the latter is running at double the clock rate and

has been built upon a significantly more sophisticated architectural design

(out-of-order execution, branch prediction etc.). In [58] it is argued that

“[t]he potential [of Intel R©Xeon Phi
TM

compared to Intel R©Xeon R© in terms

of peak performance] is higher, but so is the parallelism needed to get there”.

It is clear from Figure 6.8 that this is not the case here. Intel R©Xeon Phi
TM

is far behind Intel R©Xeon R© for all algorithms and this suggests two major

scalability bottlenecks: bandwidth saturation and thread synchronisation.

Refinement, which involves very little computation and is mainly domi-

nated by memory transfers, is the kernel scaling the worst on both platforms,

showing virtually no speedup beyond 61 threads on Intel R©Xeon Phi
TM

. Ad-

ditionally, the fact that swapping runs slower with 122 threads is indicative

of the amount of thread synchronisation. Swapping is the kernel with the
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highest barrier count. Given the bandwidth saturation and bad data lo-

cality, increasing the number of threads only makes things worse, as syn-

chronisation overhead is increased without any opportunity to offset it by

hiding memory access latency; on the contrary, having more threads per core

causes additional demand for bandwidth which is not available any more.

All these observations are in line with profiling results we got from hotspot

and concurrency analysis in the Intel R©VTune
TM

Amplifier XE performance

profiler.

Coarsening and smoothing, on the other hand, scale much better. Both

kernels are less bandwidth-hungry compared to refinement and require much

less thread synchronisation than swapping, while involving a fair amount of

floating-point arithmetic (especially smoothing). It is only expected that

those two kernels scale the best, still showing speedup when turning on

hyperthreading on Intel R©Xeon Phi
TM

.

6.6 Conclusions

In this chapter we reviewed and evaluated the threaded implementation

of the four adaptive algorithms described in Chapter 2 using the irregular

compute methodology from Chapter 4. The techniques for irregular data

we developed proved to be scalable and helped us build PRAgMaTIc, a

demanding real-life irregular application which achieves good parallel effi-

ciency even in NUMA configurations.

Summarising, the dominant factors limiting scalability are:

(a) The number of thread synchronisations (there are many unavoidable

barriers in each adaptive algorithm).

(b) Memory access latency due to bad data locality, a common prob-

lem in applications with irregular data; the fact that enabling hyper-

threading boosts PRAgMaTIc’s performance indicates that our imple-

mentation is not compute bound and can be sped up by hiding/im-

proving memory access latency.

(c) Load-imbalances between threads; even in the case of mesh smoothing,

which involves the least data-writes, the relatively expensive optimisa-

tion kernel is only executed for patches of elements whose quality falls
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below a minimum quality tolerance. This observation motivated us to

go after a better for-loop scheduling strategy based on work-stealing

principles (here, OpenMP’s guided scheduling was used for for-loops,

which proved to be adequate for benchmarks on Intel R©Xeon R© but

incurred tremendous overhead on Intel R©Xeon Phi
TM

). This experi-

mental work is presented in the next chapter.

The fact that the parallel efficiencies of mesh refinement, coarsening, swap-

ping and smoothing are comparable (up to a point) is very encouraging as

it indicates that, despite the invasive nature of the operations on these rela-

tively complex data structures, it is possible to get good intra-node scaling.
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7 An Interrupt-Driven

Work-Sharing For-Loop

Scheduler

For-loops are a key component of most scientific applications. Running loops

in parallel is a key component in accelerating a program and making the

most of modern, massively multi-threaded systems. However, parallelisation

does not come for free. Achieving good load balance usually involves some

overhead for splitting the iteration space and sharing or re-distributing work

items. This cost is increased when scheduling overhead is comparable to the

time needed to execute one iteration of the loop. Options which are consid-

ered efficient for loop parallelisation involve OpenMP’s guided scheduling

strategy and the more advanced work-stealing technique, implemented in

frameworks like Intel R©Cilk
TM

Plus.

In this chapter we present a parallel for-loop scheduler which is based on

work-stealing principles but runs under a completely cooperative scheme.

POSIX signals are used by idle threads to interrupt left-behind workers,

which in turn decide what portion of their workload can be given to the

requester. We call this scheme Interrupt-Driven Work-Sharing (IDWS).

This chapter describes how IDWS works, how it can be integrated into any

POSIX-compliant OpenMP implementation and how a user can manually

replace OpenMP parallel for-loops with IDWS in existing POSIX-compliant

C++ applications. Additionally, we measure its performance using both

a synthetic benchmark with varying distributions of workload across the

iteration space and a real-life application on Intel R©Xeon R© Sandy Bridge and

Intel R©Xeon Phi
TM

systems. Regardless the workload distribution and the

underlying hardware, IDWS is always the best or among the best-performing

strategies, providing a good all-around solution to the scheduling-choice

dilemma.
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7.1 Introduction

Most parallelism in shared-memory parallel programming comes from loops

of independent iterations, i.e. iterations which can be safely executed in

parallel. However, distributing the iteration space over the available com-

putational resources of a system is not always a simple thing. Fine-grained

control of distribution is often associated with high overhead whereas static

partitioning of the iteration space can lead to significant load imbalance. In

both cases, the impact on performance is serious.

Research on an advanced for-loop scheduler was motivated by our work

on PRAgMaTIc. Profiling data revealed that many of PRAgMaTIc’s par-

allel loops are highly diverse, involving irregular computations which intro-

duce high levels of iteration-to-iteration load imbalance. Existing schedul-

ing strategies provided by OpenMP fail to achieve good balance with low

scheduling overhead, whereas adaptive mesh algorithms which constantly

modify mesh topology make it impossible to balance workload a priori.

We wanted the new scheduler to be portable and easily plug-able into

the widely-adopted OpenMP API, so that it can target an as wide as pos-

sible range of systems, like Fujitsu’s PRIMEHPC FX10, a SPARC64
TM

-

based supercomputer [43]. Those portability requirements prohibit the use

of platform- or vendor-specific threading mechanisms, parallel libraries and

language extensions, like Intel R©Cilk
TM

Plus [99, 42, 13]. On the contrary,

they call for a POSIX-compliant implementation, based on the fact that

most operating systems used in scientific computing are POSIX-compliant

and most compilers (e.g. Linux versions of gcc, icc, xlc, etc.) implement

OpenMP threads as POSIX threads (we have found it out by experiment-

ing with those compilers). Of course, since every OS has threading and

signalling mechanisms, the new scheduler can be implemented into any com-

piler on any OS.

The main contributions of this work are the following:

• Present an new interrupt-driven work-sharing scheduler (IDWS) which

can easily be used with existing POSIX-compliant OpenMP applica-

tions.

• Demonstrate how OpenMP loops can be converted to IDWS loops.

• Describe how a compiler vendor can incorporate the new scheduler
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into their product.

• Show using a variety of benchmarks that IDWS is a good all around

solution to the scheduling-choice dilemma, always being among the

best-performing strategies in all benchmarks.

7.2 Background

OpenMP offers three different scheduling strategies for parallel loops: static,

dynamic and guided [45]. There is also a more advanced scheduling tech-

nique, known as “work-stealing”, which is implemented by libraries such as

Intel R©Cilk
TM

Plus, though it is not part of the OpenMP specification, nor

is it supported (to the best of our knowledge) by any OpenMP implemen-

tation. In this section we will present these four options and compare them

in terms of load balance, scheduling overhead and overall efficiency.

7.2.1 OpenMP static

Under the static scheduling scheme, the iteration space is divided into

equally large chunks which are then assigned to threads. This can be seen

in the first example in Figure 7.1. Partitioning of iteration space is done

statically at the beginning of the for-loop, so there is zero scheduling over-

head. On the other hand, this scheme can lead to significant load imbalance,

especially in a highly diverse loop.

7.2.2 OpenMP dynamic

Dynamic scheduling is a first approach to the problem of load imbalance.

Instead of a static partitioning of the iteration space, chunks of work are

assigned to threads dynamically. Once a thread finishes a chunk, it takes

the next available from the iteration space. This is shown in the middle

example in Figure 7.1. Access to chunks is done via atomic updates of the

loop counter; a thread acquiring a chunk reads the current value of the loop

counter and increments it atomically by the chunk size.

Dynamic scheduling solves imbalance problems as threads proceed to the

next iterations of the for-loop in a fine-grained way. As an immediate con-

sequence, good load balance comes at a cost. The loop counter is updated
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atomically and this constitutes a 2-way source of overhead. The two compo-

nents of overhead are related to instruction latency and thread competition.

The time it takes to execute an atomic instruction can vary anywhere be-

tween a standard update in L1 (if the thread performing the update is run-

ning on the same physical core as the thread which last updated the shared

variable) and an update in RAM (if the last thread to update the shared

variable is running on another socket in case of NUMA systems). This may

not be a problem in short for-loops, but becomes easily a hotspot in loops

with millions of iterations and little work per iteration (i.e. when atomic

instruction latency is comparable to the loop body itself). Secondly, as the

number of threads increases, so does the competition for the shared vari-

able, leading to either (depending on the architecture) increased locking or

increased number of failed update attempts, thus making atomic instruction

latency even longer.

It could be argued that this overhead can be mitigated by increasing the

chunk size, therefore lowering the number of times a thread will need to

access the loop counter. On the other hand, increasing the chunk size can

introduce load imbalance once again. Additionally, it is usually impossible

to know the optimal chunk size at compile time and/or it can vary greatly

between successive executions of an algorithm. Besides, relying on the chunk

size for performance optimization puts an extra burden on the programmer.

We have found that using dynamic scheduling over guided in PRAgMaTIc

can increase the execution time of specific algorithms by up to three times,

as will be shown in Section 7.5. Following that, dynamic scheduling was

rejected as an option for that framework.

7.2.3 OpenMP guided

The guided scheme is an attempt to reduce dynamic scheduling overhead

while retaining good load balance. The key difference between the two

strategies is how chunks of work are allocated. Whereas in dynamic schedul-

ing the chunk size is constant, the guided scheme starts with large chunks

and the size is reduced exponentially as threads proceed to subsequent it-

erations of the for-loop. This can be seen in the last example of Figure 7.1.

Initial large chunks account for reduced atomic accesses to the loop counter

while the more fine-grained control towards the end of the loop tries to
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maintain good load balance.

For the most part, guided scheduling works well in PRAgMaTIc, yet

there are cases where we have observed significant load imbalance. This can

happen if, for instance, most of the work in an irregular loop is accumulated

in a few of the initial big chunks. In a case like that, threads processing the

“loaded” chunks are busy for long while others go through the remaining

“light” iterations relatively quickly and reach the end of the for-loop early,

waiting for the busy workers to finish as well.

7.2.4 Work-stealing

Work-stealing ([12, 109]) is a more sophisticated technique aiming at bal-

ancing workload among threads while keeping scheduling overhead as low

as possible. It has been shown that theoretically communication efficiency

of work-stealing is “existentially optimal to within a constant factor” [14]

compared with work-sharing techniques. The generic work-stealing algo-

rithm for a set of tasks [12] can be summarized as follows. Each thread

keeps a deque (double-ended queue) of tasks to execute. While the deque

is full, the thread pops workitems from the front. Once the deque is empty,

the thread becomes a thief, i.e. it chooses a victim thread randomly and

steals a chunk of workitems from the back of the victim’s deque.

For a parallel for-loop with a predefined number of iterationsN the deques

can simply be replaced with pairs of indices < istart, iend > corresponding to

the range in the iteration space [istart, iend) which has been assigned to each

thread, 0 ≤ istart, iend < N . In this case, every thread executes iterations by

using istart as the loop counter whereas thieves steal work by decrementing

a victim’s iend.

Accesses to those pairs of indices can lead to race conditions, so they

need to be accessed with atomics. Following that, work-stealing for for-

loops comes close to OpenMP’s dynamic scheduling with some chunk size

> 1, with a major difference being that in work-stealing threads do not

compete all together for atomic access to the same shared variable (the

common loop counter); instead, congestion is rare and happens only if two

thieves try to steal from the same victim.

Performance can still suffer from load imbalance and scheduling overhead

when using work-stealing. The main drawback of the classic work-stealing
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algorithm is that thieves choose victims randomly. There is no heuristic

method to indicate which threads are more suitable victims (i.e. have more

remaining workload) than others. Stealing comes at a cost and picking

victims with too little or no remaining work is inefficient, as it leads to the

need for frequent stealing which induces some overhead. Additionally, failed

attempts do not help balance the workload. As an example of an extreme

case, a single thread becomes the sole remaining worker while the rest waste

time trying to steal from each other in vain.

Mitigating the effects of random choice was our main concern when de-

signing the new for-loop scheduler. We devised a low-overhead heuristic

method for finding appropriate victims. At the same time, we tried to

reduce scheduling overhead by eliminating the need to use atomics when

accessing each thread’s < istart, iend > pair. The following section describes

in detail how the scheduler is implemented.

7.3 Interrupt-Driven Work Sharing

Our new scheduler differs from existing work-stealing approaches in two

major ways. First of all, as was mentioned in Section 7.2.4, every worker

constantly “advertises” its progress so that thieves can find suitable victims

which have been left behind. Secondly, a thief does not actually steal work

from the victim in the classic sense; instead, it interrupts the chosen vic-

tim by sending a POSIX signal. The signal handler executed by the victim

encapsulates the code with which the victim decides what portion of its re-

maining workload can be given away. This interrupt technique is an instance

of an asymmetric Dekker protocol [32]. Using asynchronous direct messages

for fine-grained parallelism was proposed by Sanchez et al. [103], albeit at

the hardware level; our implementation, on the other hand, is solely based

on existing software tools and support by the operating system.

As it becomes apparent, the new scheduling algorithm is much closer

to work-sharing than work-stealing, therefore we call it Interrupt-Driven

Work-Sharing (IDWS). Nonetheless, we will use work-stealing terminology

throughout this chapter in order to be consistent with the literature and

avoid creating confusion.

The abstract description of this scheme can be split into three parts:
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Algorithm 20 Parallel loop executed by each thread

for i = istart; i < iend; i← i+ 1 do
flush i . from register file to memory, so that

. thieves can see this thread’s progress
execute ith iteration

flush iend . from memory to register file, as it may
. have been modified by the signal handler

end for

Algorithm 21 Work-stealing

for all threads tn do
remainingtn ← iend,tn − istart,tn − itn

end for
let T ← tn for which remainingtn = max
send signal to victim T
wait for answer
update own istart, iend
execute loop chunk

Algorithm 22 Signal handling

remaining ← iend − istart − i
if remaining > 1 then

chunk ← remaining/2
iend,thief ← iend
istart,thief ← iend − chunk
iend ← iend − chunk

end if
send reply to thief

Loop execution (Algorithm 20) Every thread executes the iterations

of the chunk it has acquired in the same way as it would using OpenMP’s

static scheduling scheme. Initially, the iteration space is divided statically

into chunks of equal size and every thread tn is assigned one chunk. The

chunk’s boundaries for thread tn, referred to as istart,tn and iend,tn , are glob-

ally visible variables accessible by all threads. Compared to static schedul-

ing, the important addition here is some necessary flushing of the loop

counter itn and the loop boundary iend,tn . More precisely, the value of itn

has to be written back to memory (instead of being cached in some regis-

ter) at the beginning of every iteration so that potential thieves can monitor
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tn’s progress, calculate how much work is left for tn and decide whether it

is worth stealing from it. Similarly, the end boundary iend,tn has to read by

tn from memory (instead of caching it in some register) before proceeding

to the next iteration because iend,tn might have been modified by the signal

handler if a thief interrupted tn while the latter was executing an iteration

of the for-loop.

Choosing suitable victims (Algorithm 21) By flushing their loop

counters, threads advertise their progress so potential thieves can find where

to steal from. When a thread becomes a thief, it calculates the remaining

workload for all other threads by reading the associated values itn , istart,tn

and iend,tn . This way, we have a heuristic method for finding which thread

has the most remaining work, thus being a more suitable victim than others.

Stealing from the most loaded thread is quite an old idea, dating back to

the work by Markatos & LeBlanc [80] and Subramaniam & Eager [107] on

affinity scheduling. This heuristic may not be optimal, but is an improve-

ment over random choice. Once the thief has spotted its victim, it sends a

signal and waits for an answer. The victim executes the signal handler and

replies with the boundaries (a pair of < istart, iend >) of the chunk it wants

to give away. Finally, the thief becomes a worker once again and moves on

to process the newly acquired chunk.

Signal handler (Algorithm 22) When a victim is interrupted by the

signal, control is transferred by the operating system to the associated han-

dler. Inside that code, the thread calculates how much work it can give

away (if any), replies to the thief with the boundaries of the donated chunk,

re-adjusts the boundaries of its own chunk and finally returns from the sig-

nal handler. It has been shown that the steal-half strategy [54], i.e. stealing

half the remaining workitems from the victim, is more effective than stealing

different percentages [25].

It is clear that there are no races and no need for atomic access to any loop

variables during the stealing process, as the donor is the one who decides

what will be donated. Of course, switching from user to kernel mode to

execute the signalling system call and busy-waiting for a reply from the

victim involves some overhead; however, as will be shown in the results

section, this method seems to be more efficient than classic work stealing.
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7.4 C++ implementation and usage

This section describes how the IDWS scheduler is implemented and how it

can replace existing OpenMP for-loops.

7.4.1 IDWS namespace

IDWS is a namespace encapsulating all necessary data structures and func-

tions used by the new scheduler. Its declaration can be seen in Code Snippet

4.

1 namespace IDWS{
2 s t r u c t thread_state_t ;
3 vector<thread_state_t> thread_state ;
4 void SIGhandlerUSR1 ( i n t sig ) ;
5 void IDWS_Initialize ( ) ;
6 void IDWS_Finalize ( ) ;
7 } ;

Code Snippet 4: IDWS namespace. It consists of initialisation and finalisa-
tion functions, the signal handler, the definition of struct thread state t

and the vector holding all thread state t instances (one per thread).

1 s t r u c t thread_state_t{
2 size_t start ;
3 size_t end ;
4 size_t processed ;
5 i n t current_ctx ;
6 bool active ;
7

8 i n t signal_arg ;
9 pthread_t ptid ;

10 pthread_mutex_t comm_lock ;
11 pthread_mutex_t request_mutex ;
12 pthread_cond_t wait_for_answer ;
13 } ;

Code Snippet 5: thread state t struct

struct IDWS::thread state t The heart of IDWS is a data structure

named thread state t, which encapsulates all variables involved in parallel

loop execution and work-stealing. Each participating thread has its own
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instance of this struct, which is accessible by all other threads. The struct

can be seen in Code Snippet 5.

• start and end: Define the current chunk boundaries.

• processed: Is used by a thread to advertise its progress through the

loop.

• current ctx: IDWS loops are nowait loops, which means that a

thread can proceed to the rest of the program without synchronising

with other threads. In order to know whether two threads work inside

the same loop, so stealing work from one another is valid, a counter

current ctx is used, which is incremented each time a thread finishes

a loop. Here we assume that all threads will go through all loops of

the program.

• active: Indicates whether the thread is inside the loop; this variable

is used by thieves to skip immediately threads which have also become

thieves.

• signal arg: POSIX signals can only have two arguments, what signal

is to sent and to whom. The victim needs to know, however, who the

thief is, so signal arg is used by the thief to send its ID to the victim.

• comm lock: In order to avoid needless busy-waiting by other thieves

while one thief has already sent a signal to its victim, we use a lock

(in form of a mutex); while this lock is held by a thief, other thieves

will choose other victims to steal from.

• ptid: POSIX ID of the thread; it is used by the thief to raise the

signal.

• request mutex and wait for answer: POSIX mutex and condition

variables which assist the process of sending the signal and waiting for

a reply. Locking the mutex also serves as a memory fence so that the

victim is guaranteed to see the arguments sent by the thief.

Note that we need two separate mutexes and cannot use request mutex

in place of comm lock. The former is implicitly released by the thief in

order to enable the victim to signal the condition variable; in the meantime,
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before the victim locks request mutex, another thief might acquire the lock

and destroy the process.

vector IDWS::thread state Each thread has its own instance of the

thread state t struct. All instances are held in a shared vector called

thread state.

Initialisation and finalisation Like MPI, IDWS needs to be initialised

by calling IDWS::IDWS Initialize(). During initialisation, threads create

their thread state t structs and push them back into the shared vector

thread state. Struct initialisation also includes finding POSIX IDs and

initialising comm lock, request mutex and wait for answer. Similarly,

this data has to be destroyed at the end of the program, which is done

by a call to IDWS::IDWS Finalize(). Additionally, we must register a sig-

nal handler to serve the interrupt. We have chosen signal SIGUSR1 and

function IDWS::SIGhandlerUSR1 as the signal handler. Choice of SIGUSR1

was arbitrary; it should be noted, however, that if an application uses the

same signal for other purposes, it must re-register the original handler upon

finishing with IDWS or use a different signal in the first place.

Signal handler A victim decided what portion of its chunk can be do-

nated by executing the signal handler. The way it is done is described in

Code Snippet 6. The victim first checks that the thief works in the same

context. Then, it calculates how much work it can give away using start,

end and processed, also leaving a safety margin due to an uncertainty re-

garding the true value of processed. In case of success, the victim updates

both the thief’s and its own start and end and sets sig arg=1 to indicate

successful donation (otherwise, sig arg is set to another value). Finally, the

victim signals the condition variable to let the thief know that the signal

handler is over.

7.4.2 Prologue and epilogue macros

The new scheduler is defined in two parts, using macros IDWS prologue and

IDWS epilogue. These macros must surround the loop body.
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1 void SIGhandlerUSR1 ( i n t sig ){
2 i n t tid = omp_get_thread_num ( ) ;
3 // Who sent the s i g n a l
4 i n t sig_thread = thread_state [ tid ] . signal_arg ;
5 pthread_mutex_lock(&thread_state [ tid ] . request_mutex ) ;
6

7 // Only share a chunk i f both
8 // threads are in the same context
9 i f ( thread_state [ tid ] . current_ctx ==

10 thread_state [ sig_thread ] . current_ctx ){
11 size_t remaining = thread_state [ tid ] . end −
12 thread_state [ tid ] . start − thread_state [ tid ] . processed ;
13 // Leave a s a f e t y margin − we do not know i f the
14 // s i g n a l was caught be fore , a f t e r or even in the
15 // middle o f updating th r e ad s t a t e [ t i d ] . p roce s s ed .
16 i f ( remaining > 0){
17 −−remaining ;
18 size_t chunk = remaining /2 ;
19 thread_state [ sig_thread ] . start =
20 thread_state [ tid ] . end − chunk ;
21 thread_state [ sig_thread ] . end = thread_state [ tid ] . end ;
22 thread_state [ tid ] . end −= chunk ;
23 // r ep ly su c c e s s
24 thread_state [ tid ] . signal_arg = −1;
25 } e l s e
26 thread_state [ tid ] . signal_arg = −2; // r ep ly f a i l u r e
27 } e l s e
28 thread_state [ tid ] . signal_arg = −2; // r ep ly f a i l u r e
29

30 pthread_cond_signal(&thread_state [ tid ] . wait_for_answer ) ;
31 pthread_mutex_unlock(&thread_state [ tid ] . request_mutex ) ;
32 }

Code Snippet 6: Signal handler.

IDWS prologue macro Before entering a loop, the iteration space is split

into equal chunks which are assigned to threads. After that, each thread

begins the execution of its chunk. Compared to a standard for-loop, a IDWS

for-loop is defined slightly differently. Apart from checking for the end of

the loop and incrementing the counter after every iteration, in IDWS we

must also enforce the compiler to flush the counter back to memory and load

the updated value of iend from memory (which might have been modified

by the signal handler), as indicated by Algorithm 20. Flushing is done

selectively for those two variables by casting them to volatile datatypes.

Using #pragma omp flush would flush the entire shared program state,

which is not efficient. A pseudo-code of how the macro expands is given

in Code Snippet 7. Parameters TYPE, NAME and SIZE correspond to the

datatype of the loop counter, its name and the size of the iteration space,
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1 /∗ IDWS prologue (TYPE,NAME, SIZE) s t a r t s expanding here ∗/
2 // assume t i d = omp get thread num ( ) ;
3 thread_state [ tid ] . start = . . . ;
4 thread_state [ tid ] . end = . . . ;
5 thread_state [ tid ] . processed = 0 ;
6 thread_state [ tid ] . active = true ;
7

8 do{
9 size_t __IDWS_cnt= 0 ;

10 f o r ( TYPE NAME = thread_state [ tid ] . start ; ; ++NAME , ++__IDWS_cnt ){
11 // Force f l u s h i n g the p rog r e s s back in to memory
12 ∗ ( ( v o l a t i l e size_t ∗) &thread_state [ tid ] . processed ) = __IDWS_cnt ;
13 // Force re−l oad ing the end boundary from memory
14 i f ( NAME >= ∗ ( ( v o l a t i l e size_t ∗) &thread_state [ tid ] . end ) )
15 break ;
16 /∗ IDWS prologue ends here ∗/
17

18 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
19 ∗ loop body i s executed here ∗
20 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
21

22 /∗ IDWS epilogue s t a r t s expanding here ∗/
23 } // end f o r
24

25 // become a t h i e f
26 thread_state [ tid ] . active = f a l s e ;
27 std : : map<int , size_t> remaining ;
28 forall ( t in active threads ) // only check non−t h i e v e s
29 remaining [ t ] = thread_state [ t ] . end − thread_state [ t ] . start −
30 thread_state [ t ] . processed ;
31 traverse remaining from largest to smallest ;
32 victim = first thread t f o r which

33 pthread_mutex_trylock(&thread_state [ t ] . comm_lock ) succeeds ;
34 i f ( no victim found )
35 break ; // e x i t the do−whi le loop
36

37 // t e l l the v ic t im who we are
38 thread_state [ victim ] . sig_arg = tid ;
39 pthread_mutex_lock(&thread_state [ victim ] . request_mutex ) ;
40 pthread_kill ( thread_state [ victim ] . ptid , SIGUSR1 ) ; // send s i g n a l
41 pthread_cond_wait(&thread_state [ victim ] . wait_for_answer ,
42 &thread_state [ victim ] . request_mutex ) ;
43 pthread_mutex_unlock(&thread_state [ victim ] . request_mutex ) ;
44

45 // become a worker again
46 i f ( thread_state [ victim ] == −1) thread_state [ tid ] . active = true ;
47 pthread_mutex_unlock(&thread_state [ victim ] . comm_lock ) ;
48 } whi le ( thread_state [ tid ] . active = true ) // end do
49

50 thread_state [ tid ] . current_context++; // proceed to next loop
51 /∗ IDWS epilogue ends here ∗/

Code Snippet 7: Pseudo-code demonstrating how IDWS prologue and
IDWS epilogue are expanded around the loop body.

respectively. In the current implementation of the new scheduler we assume
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that loops run from 0 to SIZE with increments of 1 and that the loop counter

is of an unsigned integral datatype.

IDWS epilogue macro After a thread finished its chunk, it becomes a

thief. That means it has to enter the stealing process, as described in

Algorithm 21. The IDWS epilogue macro serves this purpose. The way

the macro expands can be seen in Code Snippet 7. The thief calculated for

all active workers the amount of remaining work. Then, starting from the

worker with the highest remaining workload, it tries to acquire the worker’s

comm lock. If no suitable worker is found, then the thief exits the IDWS

loop and proceeds to the rest of the code. Otherwise, the thief locks the

victim’s mutex, sends the signal and waits on the victim’s condition variable

for an answer. The answer comes via sig arg. If sig arg==-1, then the

victim has set the thief’s start and end variables, so the thief becomes a

worker again. If any other answer has been sent back, then the thief exits

the IDWS loop. It is important to note that a memory fence is necessary

on the thief’s side between setting the victim’s signal argument sig arg

and raising the signal, so that we make sure that the victim will see the

correct value of sig arg. Locking the victim’s mutex before sending the

signal works as an implicit memory fence.

7.4.3 OpenMP to IDWS

1 #inc lude <omp . h>
2 . . .
3 i n t main ( ){
4 . . .
5 #pragma omp p a r a l l e l
6 {
7 . . .
8 #pragma omp f o r
9 f o r ( TYPE VAR=0; VAR<SIZE ; ++VAR ){

10 do_something ( VAR ) ;
11 }
12 . . .
13 }
14 . . .
15 }

Code Snippet 8: Initial OpenMP for-loop. The loop must be inside an OMP
parallel region.
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1 #inc lude <omp . h>
2 #inc lude ”IDWS. h”
3 . . .
4 i n t main ( ){
5 . . .
6 IDWS : : IDWS_Initialize ( ) ;
7 i n t nthreads = omp_get_max_threads ( ) ;
8 . . .
9 #pragma omp p a r a l l e l

10 {
11 i n t tid = omp_get_thread_num ( ) ;
12 . . .
13 IDWS_prologue ( TYPE , VAR , SIZE )
14 do_something ( VAR ) ;
15 IDWS_epilogue

16 . . .
17 }
18 . . .
19 IDWS : : IDWS_Finalize ( ) ;
20 }

Code Snippet 9: Transformed code showing what has to be added/modified
in order to use the new scheduler instead of a standard OpenMP scheduling
strategy.

The new scheduler can be used directly with virtually any C++ OpenMP

application written for any POSIX-compliant operating system (provided

that the compiler used implements OpenMP upon pthreads). A prerequi-

site for converting an OpenMP loop to a IDWS one is that the former is

written as shown in Code Snippet 8, i.e. the loop must be inside an omp

parallel region. Conversion to IDWS loops is shown in Code Snippet 9.

The user needs to include header file “IDWS.h” which can be downloaded

from PRAgMaTIc’s page on Launchpad1. This header file defines the IDWS

namespace and the prologue and epilogue macros.

Compared to the initial version, we need to define:

• int nthreads=omp get max threads(): shared variable outside the

parallel region,

• int tid=omp get thread num(): thread-private variable inside the

parallel region,

remove the #pragma omp for directive and the for-loop declaration and,

finally, surround the loop-body with the IDWS prologue and IDWS epilogue

1https://code.launchpad.net/~gr409/pragmatic/IDWS
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macros.

7.5 Experimental Results
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Figure 7.2: Relative execution time between IDWS, OpenMP guided and
Intel R©Cilk

TM
Plus on the Intel R©Xeon R© E5-2650 system. For

each benchmark, the fastest scheduling strategy is taken as ref-
erence (scoring 1.0 on the y-axis).

In order to measure the performance of our new scheduler, we ran a series

of tests using both synthetic benchmarks and real kernels from the PRAg-

MaTIc framework. We used three systems: a dual-socket Intel R©Xeon R©

E5-2650 (Sandy Bridge, 2.00GHz, 8 physical cores per socket, 2 hyper-

threads per core, 32 threads in total), a dual-socket Intel R©Xeon R© E5-2643

(Sandy Bridge, 3.30GHz, 4 physical cores per socket, 2 hyperthreads per

core, 16 threads in total) and an Intel R©Xeon Phi
TM

7120P board (1.238GHz,

61 physical cores, 4 hyperthreads per core, 244 threads in total). Both

Intel R©Xeon R© systems run Red Hat R©Enterprise Linux R© Server release 6.4

(Santiago). Both versions of the code (intel64 and mic) were compiled with

Intel R©Composer XE 2013 SP1 using the -O3 -xAVX optimisation flags. The

125



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

R
egular

R
andom

D
ense End

D
ense Begin

Periodic

C
oarsen

R
efine

Sw
ap

Sm
ooth

R
e

la
ti
v
e

 e
x
e

c
u

ti
o

n
 t

im
e

IDWS
OpenMP Guided

Intel


Cilk


Plus

Figure 7.3: Relative execution time between IDWS, OpenMP guided and
Intel R©Cilk

TM
Plus on the Intel R©Xeon R© E5-2643 system. For

each benchmark, the fastest scheduling strategy is taken as ref-
erence (scoring 1.0 on the y-axis).

benchmarks were run using Intel R©’s thread-core affinity support with the

maximum number of available threads on each platform. Additionally, we

ran a second series of benchmarks on Intel R©Xeon Phi
TM

using half the avail-

able number of threads (61 cores, 2 hyperthreads per core) in order to link

this section to PRAgMaTIc’s performance results discussed in Section 6.5

and more specifically in order to highlight the contribution of IDWS to the

problem we observed when running PRAgMaTIc with guided scheduling

using 244 threads.

The synthetic benchmark was designed to be compute-bound with mini-

mal memory traffic and no thread synchronization. Our purpose is to show

how the different scheduling strategies compare to each other in terms of

achievable load balance and incurred scheduling overhead without being af-

fected by other factors (such as memory bandwidth, data locality etc.). The

synthetic benchmark uses an array int states[16M], which is populated

with values in the range [0..3]. Then, the parallel loop iterates over this ar-
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Figure 7.4: Relative execution time between IDWS, OpenMP guided and
Intel R©Cilk

TM
Plus on the Intel R©Xeon Phi

TM
7120P coprocessor

using 122 threads. For each benchmark, the fastest scheduling
strategy is taken as reference (scoring 1.0 on the y-axis).

ray. For each element i, i ∈ [0..16M), the kernel performs a different amount

of work according to the value of states[i]. If states[i]==0, nothing is

done. If states[i]==1, the kernel computes sin() values of i and powers

of i. If states[i]==2, the kernel additionally computes cos() values of i

and its powers. Finally, if states[i]==3, the kernel additionally computes

some sinh() values.

Array states is populated five times with different distributions of work-

load and total amount of work. Each population has been given a name:

• Regular: All elements of states are set equal to 2. This is a distribu-

tion corresponding to a regular loop which does the exact same thing

in every iteration. Load imbalance is still possible, as interference

from the OS and other factors (e.g. cache conflicts, hyper-threading

issues) can hold some threads behind.

• Random: states is populated with random values following a uni-
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Figure 7.5: Relative execution time between IDWS, OpenMP guided and
Intel R©Cilk

TM
Plus on Intel R©Xeon Phi

TM
7120P coprocessor us-

ing 244 threads. For each benchmark, the fastest scheduling
strategy is taken as reference (scoring 1.0 on the y-axis).

form distribution. This sub-benchmark corresponds to real-life dis-

tributions in problems like graph colouring or the swap and smooth

kernels in PRAgMaTIc.

• Dense End: Most of the workload is accumulated towards the end

of the iteration space, where states[i]=3, while the beginning is

populated with a uniform mixture of values [0..3). The rest of the

iteration space is set to 0, i.e. no work. This is a distribution closely

related to the refinement kernel in PRAgMaTIc.

• Dense Start: Mirrored distribution of Dense End. Closely related

to PRAgMaTIc’s coarsening kernel. This is an example of workload

distribution for which OpenMP guided scheduling is a bad choice.

• Periodic: There is a repeating pattern of states throughout the itera-

tion space. It is particularly bad for static scheduling with interleaved

allocations of iterations (i.e. with some chunk size).
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Apart from the synthetic benchmark, we also ran PRAgMaTIc using the

various scheduling options in order to see how each strategy performs in

a real-life scenario, where compute capacity is not the only performance-

limiting factor. It should be noted that PRAgMaTIc is build upon OpenMP,

so there are no results for Intel R©Cilk
TM

Plus in this case.

Table 7.1, Table 7.2 and Tables 7.3 & 7.4 show the execution time on

the three platforms, respectively, using six scheduling strategies for each

distribution of the synthetic benchmark and the four PRAgMaTIc kernels.

The strategy named “OMP static,1” is static scheduling with chunk size

equal to 1. As can be seen, IDWS is either the fastest scheduling option

or very close to the fastest for each benchmark-platform combination. Ad-

ditionally, it clearly outperforms Intel R©Cilk
TM

Plus, with the performance

gap becoming wider as the number of threads increases and Cilk’s design to

pick victims in a random fashion becomes inefficient. Those results make

IDWS look promising for the thousand-core era.

Regarding PRAgMaTIc, the major competitor of IDWS seems to be

OpenMP’s guided scheduling. Despite not being very suitable for certain

kernels (coarsening) theoretically, in practice it performs just as well as

IDWS. A notable exception is the 244-thread case on Intel R©Xeon Phi
TM

,

where guided scheduling is the worst choice among the available options.

Continuing the discussion from Section 6.5 regarding this case, we see that

IDWS gives a considerable boost to performance, resulting in execution

times much closer to the expected ones. Results for the 244-thread case

are still worse that those for 122 threads, but this is due to the reasons we

analysed in the related paragraph on PRAgMaTIc’s performance.

A comparison of relative performance between the three major competi-

tors (IDWS, OpenMP guided and Intel R©Cilk
TM

Plus) is shown in Figure 7.2

(Intel R©Xeon R© E5-2650 system), Figure 7.3 (Intel R©Xeon R© E5-2643 system),

Figure 7.4 (Intel R©Xeon Phi
TM

with 122 threads) and Figure 7.5 (Intel R©Xeon

Phi
TM

with 244 threads). For each benchmark, we compare the relative ex-

ecution time between IDWS, OpenMP guided and Intel R©Cilk
TM

Plus (for

PRAgMaTIc kernels there is only IDWS vs OpenMP guided comparison).

Reference execution time per benchmark, i.e. the one which corresponds to

1.0 on the y-axis, is execution time of the fastest scheduler.

Finally, in order to back up our claim that random choice of victims

can hinder the efficiency of work-stealing, we ran the synthetic benchmarks
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using a modified version of IDWS in which thieves do not use a heuristic

to pick their victims; instead, the decision is random. A comparison of

relative performance of the two IDWS versions on Intel R©Xeon R© E5-2650

as a function of the number of threads is shown in Figure 7.6. It is clear

that not having a heuristic has a serious impact on the efficiency of work-

stealing as the number of threads increases. Picking the wrong victim incurs

the overhead of mutex- and signal-related system calls on the thief’s side

and the interruption of the victim. Had we used a work-stealer based on

atomics, the overhead of picking the wrong victim would be lower (atomics

are definitely faster than system calls); yet it would still be there, as the

thief would waste time trying to hit the right victim instead of getting a

chunk of work as soon as possible.
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Figure 7.6: Relative execution time between regular IDWS and the version
in which victims are chosen randomly on Intel R©Xeon R© E5-2650.
Execution time of regular IDWS is taken as reference (1.0).
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7.6 Study of Potential Overheads

There are aspects of our scheduler which can be claimed to introduce over-

heads not present in classic work-stealing implementations. Below, we list

potential sources of overhead and argue that they do not impact perfor-

mance in critical ways.

• Calculating the remaining workload for all potential victims is a linear

function of the number of participating threads and this approach might

not be scalable to thousands of cores. However, our profiling results

showed that workload calculation is not a performance bottleneck,

even on Intel R©Xeon Phi
TM

with 244 threads, and the actual hotspot

is waiting for an answer from the victim.

• The thief interrupts a victim, which executes a handler to give away

work. This interruption, and the corresponding handling routine, af-

fects the critical path of a worker, adding overhead to its execution. It

is the idle thread the one that should perform the corresponding chores.

Admittedly, the victim’s critical path is affected when it executes the

signal handler but in exchange the victim can access its loop variables

very fast, without atomics. It is a design compromise which seems to

work.

• IDWS workers expose their progress by constantly flushing to/from

memory their loop counter and their upper bound. This is a source of

inefficiency. Constant flushing is not an overhead on modern hard-

ware. Valid copies of the loop counter and upper bound are always in

the victim’s L1 cache, since only the victim modifies them, so load-

/store latency is only 4-6 cycles. On modern systems with pipelined

architectures, instruction re-ordering by the compiler, out-of-order ex-

ecution and speculative execution of branches, the total overhead is at

most 2-3 cycles. That is really negligible compared to the loop body,

which can be from tens up to millions of cycles long. In CPUs with su-

perscalar or heterogeneous pipelines (i.e. virtually everything on the

market since the mid 1990s), which issue more than one instructions

in parallel, the overhead can easily be zero cycles - loads/stores just

fill pipeline slots which would remain empty otherwise.
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7.7 Related Work

A communication-based work-stealer was developed by Acar et al. [2]. It

differs from our scheduler in numerous ways. Most notably, this work-stealer

uses atomics instead of signals to notify the victim of the steal request: each

thread has a mailbox and potential thieves write their IDs atomically using

compare-and-swap operations when they want to steal work. The victim

checks its mailbox at the end of every iteration of the for-loop and reads the

ID of the thief who (if any) wrote to the mailbox. This can be wasteful for

the thief, who has to wait until the victim completes the current iteration

of its loop; in our implementation the victim is interrupted immediately,

minimising the thief’s waiting time. Additionally, in Acar’s version victims

are picked randomly and there is no heuristic for finding the most loaded

worker.

7.8 Conclusions

This chapter described the Interrupt-Driven Work-Sharing for-loop sched-

uler which is based on work-stealing principles and tries to address a major

problem of the original work-stealing algorithm: random choice of victims.

The first implementation of IDWS was shown to work very efficiently, out-

performing Intel R©Cilk
TM

Plus, while being from slightly slower to consider-

ably faster than the best (per kernel) OpenMP scheduling strategy. These

results indicate that IDWS could become the universal default scheduler

for OpenMP for-loops, freeing the programmer from tricky and disruptive

management of load balance.
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8 Conclusions

In this chapter we review the achievements of this thesis which support

the claims that are made within, putting an emphasis on the novel and

important aspects of the investigations we have presented. At the end we

present our ideas for future work and how it should proceed.

8.1 Summary of Thesis Achievements

In this section we present the achievements of this research, structured

around the contributions list from Section 1.4.

• We present an irregular compute framework consisting of scalable par-

allel techniques for manipulating mutable irregular data. In Chapter

4 we analysed the topological hazards and data races that can oc-

cur when working on irregular data and argued that graph colouring

combined with the deferred-updates strategy results in safe parallel

execution. Moreover, we proposed the use of atomics to create shared

worklists, which provides a synchronisation-free method compared to

classic reduction-based worklist creation.

• We demonstrate an improved parallel greedy colouring algorithm for

shared-memory environments. In Chapter 5 we reviewed older ap-

proaches to parallelising the greedy graph colouring algorithm and

listed their weaknesses. Building upon the best among them, the algo-

rithm by Çatalyürek et al., we reduced performance-limiting barriers

and devised an improved optimistic version which outperforms its pre-

decessor by as much as 50% in heavily multithreaded environments.

This case provides evidence that introducing thread divergence in an

optimistic algorithm can reduce the amount of rolling-back.

• We show how the scalable parallel techniques are applied to adaptive

mesh algorithms. Graph colouring, atomic-based worklist creation
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and the deferred-updates strategy were combined with the adaptive

algorithms from Chapter 2, resulting in PRAgMaTIc, the first (to the

best of our knowledge) threaded implementation of mesh adaptivity.

Performance results in Chapter 6 demonstrate good scalability and

parallel efficiency, given the invasive nature of adaptive algorithms,

even in NUMA configurations.

• We present some early work on an interrupt-based work-sharing sched-

uler for OpenMP. In Chapter 7 we explained why built-in scheduling

strategies of OpenMP are not optimal and proposed an interrupt-

driven work-sharing scheduler which seems to be a good all-around

option for OpenMP, while also outperforming Intel R©Cilk
TM

Plus.

8.2 Discussion

Contributions of this thesis can be split into two groups, (a) the algorithmic

innovations and (b) their embodiment in software which led to the first

effective threaded mesh adaptivity framework. Below we discuss weaknesses

of our work and in the next section propose potential solutions for future

investigation.

8.2.1 Algorithmic Innovations

In our attempt to parallelise algorithms for mutable irregular data we used

four auxiliary techniques, namely graph colouring, the deferred-updates

mechanism, atomic-based worklist creation and work-stealing using POSIX

interrupts. Some of them seem to be optimal, while others could be im-

proved.

Graph colouring Our improved optimistic method seems to be nearly

optimal both in terms of execution speed, scaling very strongly even to

hundreds of threads, and number of colours, using the same amount as

the serial greedy algorithm (which has been shown to produce near-optimal

colouring, as was mentioned in Chapter 5). We do not believe that this

method can be improved any further.
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Atomic-based worklist creation This approach to parallel worklists

proved to be very fast, eliminating the need for thread synchronisation and

subsequent global reduction on the number of elements each thread needs

to push back into the list. It allowed us to have nowait for-loops, i.e.

OpenMP parallel loops where threads do not synchronise at the end of

the loop. Considering that thread barriers is one of the dominant factors

limiting scalability of PRAgMaTIc, eliminating some of them is important.

We cannot think of a more efficient way of creating worklists in parallel.

Deferred-updates mechanism This strategy proved to be key in achiev-

ing high performance while keeping the code race-free. Overhead of the

mechanism itself is negligible, never showing up in our performance pro-

filing tools. However, in order to use this strategy it is necessary to intro-

duce additional thread synchronisation. All threads must finish execution of

an adaptive kernel, synchronise, commit the updates and then synchronise

again before proceeding to the next independent set. This results in two

thread barriers per independent set and btotal = 2×nsets barriers per sweep

of the adaptive algorithm.

Interrupt-Driven Work-Sharing scheduler The IDWS scheduler was

shown to perform very well, achieving optimal load balance (since it imple-

ments range-stealing) while mitigating the negative impact on performance

when choosing victims randomly. However, profiling the scheduler revealed

a prevalent hotspot: waiting for an answer from the victim. We believe that

if waiting time is minimised, performance of IDWS will be vastly improved,

possibly making the scheduler outperform its main competitor, OpenMP

guided, in those benchmarks where the latter is currently faster.

8.2.2 PRAgMaTIc

As was discussed in Section 6.5, PRAgMaTIc is fast and scalable, yet its

performance can be improved. Two dominant factors were spotted which

limit parallel efficiency: thread synchronisation and bandwidth saturation.

Admittedly, in our first attempt to parallelise mesh adaptivity we neglected

data locality issues. Optimal data reuse is hard when working on irregu-

lar data for reasons explained in Section 1.2. However, there is room for

improvement.
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8.3 Future Work

Reflection on our work from the previous section highlights the main aspects

onto which we should shift our focus for future work.

Regarding locality issues in PRAgMaTIc, an immediate solution to this

problem could be merging the four adaptive algorithms into a unified super-

algorithm. Looking at how those algorithms were parallelised, we can see

a common pattern: they process the mesh in batches of independent sets

of vertices (with the exception of refinement). Every vertex defines a mesh

cavity consisting of all adjacent vertices and elements. Consequently, in-

dependent vertices define independent cavities, i.e. local mesh patches on

which a thread can perform any operation without worrying about races

(with the exception of updating adjacency lists for vertices on the cavity

boundary). It is a form of implicit, on-the-fly mesh partitioning. Following

this approach, cavity-related data is loaded into the cache once and then

all 4 algorithms are applied to the cavity, making effective reuse of what is

already in the cache.

A side benefit of the unified super-algorithm is that, subsequently, thread

barriers, mesh colourings and committing of deferred operations pertaining

to each algorithm are also merged, minimising the overhead of those auxil-

iary parts of mesh adaptivity. Especially for thread synchronisation, it can

be expected that barriers will be reduced by a factor of ≈ 3. However, it

must be pointed out that applying adaptive operations using this unified

approach effectively constitutes a different mesh adaptation algorithm. We

will have to investigate potential compromises (if any) to the resulting mesh

quality.

In Section 4.4 we argued that the deferred-updates strategy is a fast alter-

native to a 2-distance colouring of the graph, which is more time-consuming

than a simple 1-colouring and possibly results in more colours being used,

effectively limiting the exposed parallelism. In our attempt to minimise

thread synchronisation, it is worth exploring whether a 2-distance colour-

ing would eventually be a better approach, since using it will eliminate one

thread barrier per independent set, leaving us with (btotal)
2−distance = 1 ×

(nsets)
2−distance barriers per sweep of the adaptive algorithm. This hypothe-

sis will be verified if the 2-distance colouring uses less than double the colours

of the 1-distance colouring, so that (btotal)
2−distance < (btotal)

1−distance.
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Two main points of focus for further work on loop scheduling should

be data locality and efficiency of work-sharing. Work on locality issues

has been published by several groups ([85, 52, 98, 1]). Data locality has

been neglected in this work both for IDWS and PRAgMaTIc; however, it

will be quite important in the context of the unified adaptive algorithm. In

terms of efficiency, it is worth exploring ways to minimise the thief’s waiting

time. Moving toward this direction, it could be worth taking a step back

and reconsidering use of atomics instead of signals. The main argument

against atomics was that every worker would have to constantly access its

upper bound atomically, since a thief may have modified it, which is quite

expensive. Performance of atomic operations is expected to be improved in

the latest and future CPU architectures (e.g. on Intel R©Haswell an atomic

read will be just a regular load from L1 most of the time and fetching the

updated value from elsewhere will be necessary only if some other thread

has modified it). Finally, Adnan and Sato have presented interesting ideas

on efficient work-stealing strategies [3], some of which could be applicable

to our work-sharing scheduler.
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