
Profiles of Behaviour for Logic-Based Agents

F. Sadri and F. Toni

Department of Computing, Imperial College London,
{fs,ft }@doc.ic.ac.uk

Abstract. In an earlier paper [6] we presented a declarative approach for agent
control. In that work we described how control can be specified in terms ofcycle
theories, which define declaratively the possible alternative behaviours of agents,
depending on their internal state and (their perception of) the external environ-
ment in which they are situated. This form of control has been adopted for logic-
basedKGP agents[8, 2]. In this paper we show how using this form of control
specification we can specify differentprofilesof agents, how they would vary the
behaviourof agents and what advantages they have with respect to factors in the
application and in the environment, such as time-criticality.

1 Introduction

In an earlier paper [6] we described how to specify control of agents via cycle theo-
ries. The approach is based on representing and reasoning with preferences and allows
flexible control of the operations of agents. This takes the control beyond a fixed one-
size-fits-all approach and allows the operations of the agents to be chosen dynamically
given the circumstances of the environment, the state of the agent and its preferences.
Cycle theories have been adopted as the means of control in the KGP agent model [8, 2]
developed within the SOCS project1. KGP is a modular logic-based model developed
to cater for the challenges of open global computing environments. It relies upon a
collection of capabilities utilised within transitions controlled by cycle theories. All
the components are defined within computational logic, some using abductive logic
programming and others using logic programming with preferences. The capabilities
are designed to provide functionalities such as planning, reactivity, temporal reasoning
and goal decision, all of which have been envisaged useful, maybe even necessary,
for coping and adapting in a dynamic open environment. The KGP model has been
implemented within the PROSOCS platform [12].
The behaviour of KGP agents can be seen as the sequence of transitions or operations
they perform, and this sequence is determined by the agents’ cycle theories. Thus by
varying the cycle theory one can vary the behaviour of the agent. We have explored
a number of such variations resulting in different profiles of behaviour. In an earlier
paper [6] we briefly mentioned three, the focussed, careful and impatient profiles. In
this paper we detail the first two. We characterise them formally, show how to design
cycle theories that achieve them and discuss their advantages depending on the features
of the environment and application domains. Other profiles are described in [1].

1 http://lia.deis.unibo.it/Research/Projects/SOCS/

The motivation for this work is threefold: 1) to explore the degree of heterogeneity that
can be achieved by varying cycle theories; 2) to explore the advantages of different
profiles of behaviour with respect to different parameters such as the dynamic nature
of the environment and the time-critical nature of applications; 3) to explore how such
analysis can provide guidelines for implementers who use the PROSOCS platform.
Environments and circumstances in which agents have to function can vary. Some en-
vironments can be fairly static and predictable, while others can be highly dynamic
and unpredictable. Agents may or may not have strict deadlines for their activities, and
agents’ resources may be limited, thus constraining what they can do, or they may have
few resource restrictions. What interests us in this paper is to explore what profiles of
behaviour would be advantageous in what type of environment and under what circum-
stances. Moreover, we would like to explore how to define such profiles by varying the
control strategies of agents defined via cycle theories.
The paper is organised as follows. In Section 2 we present two examples to motivate
the careful and focussed profiles. In Sections 3 and 4 we describe the necessary back-
ground to our work. In Section 5 we describe the careful and the focussed profiles in
detail, show the characteristics of cycle theories that provably achieve these profiles,
and discuss the pros of the two behaviour profiles. In Section 6 we conclude.

2 Motivating Examples

In this section we motivate, in the context of concrete examples, the two profiles we
will study and formally define later, in Section 5.

2.1 Careful profile
Intuitively an agent endowed with this profile frequently re-examines its commitments
to ensure that he honours only those that are feasible and necessary and he is not encum-
bered by any infeasible or unnecessary commitments. The advantage of such a profile
is evident in a dynamic, unpredictable environment.
Consider an agentc who has sent its registration form to a conferenceconf05 and thus
believes that it has registered for the conference. But it now wishes not to be registered
at the conference. It sets itself this goal, and plans for it by generating an action to
cancel his registration atconf05. Suppose the agent knows that :

If it observes that the deadline for cancellation for a conference has reached
and it expects to cancel its registration at the conference then it should contact
its bank and tell them to stop its credit card payment to the conference.

Suppose before it has a chance to execute the action of cancellation of its registration it
receives a message from the conference secretary telling it that there was a problem with
its initial attempt at registration (for example the registration form arrived corrupted)
and so it is actually not registered.
An agent with the careful profile will immediately realise that there is no longer any
need to cancel its registration and consequently will not contact its bank to tell them to
stop the credit card payment. But, under the same circumstances, an agent with a differ-
ent profile might execute the (unnecessary) acts of contacting the bank and canceling
the payment.

2.2 Focused profile

An agent may attempt to plan for multiple goals at once or may plan for one goal at
a time. If the agent has limited resources it may be better off trying one goal at a time
because typically it may not have enough resources for achieving multiple goals, and
attempting to do so would only lead to time-wasting failures. This is the motivation
behind our focussed profile. An agent endowed with the focussed profile focuses on
one goal at a time.
Suppose an agent has two goals, one to have a particular book and the other to have
a particular CD. Suppose the book costs£10 and the CD£15, and the agent has£20
available to spend. This agent cannot achieve both its goals, because due to its financial
constraints it cannot form a consistent plan that would achieve both goals. If the agent
has the focussed profile it will achieve one of them but if it has any other profile it may
not achieve either goal.
In the next two sections we give the background that is necessary in order to formally
define the profiles and show their consequences in terms of the behaviour of agents.

3 The KGP Model of Agency

Here we briefly summarise the KGP model for agents. Formal details can be found in
[8, 2]. This model relies upon

– an internal (or mental) state,
– a set ofreasoning capabilities, in particular supporting planning, temporal reason-

ing, reactivity and goal decision,
– a sensing capability, allowing agents to observe their environment and actions by

other agents,
– a set oftransition rules, defining how the state of the agent changes, and defined in

terms of the above capabilities,
– a set ofselection functions, to provide appropriate inputs to the transitions,
– a cycle theory, for deciding which transitions should be applied when, and defined

using the selection functions.

Internal state. This is a tuple〈KB, Goals, P lan, TCS〉, where:
– KB is the knowledge base of the agent, and describes what the agent knows (or

believes) of itself and of the environment.KB consists of various modules support-
ing the different reasoning capabilities of agents, and includingKB0, for holding
the (dynamic) knowledge of the agent about the external environment in which it is
situated.

– Goals is the set of properties that the agent wants to achieve, each one with an
associate time variable, possibly constrained by temporal constraints (belonging to
TCS), defining when the goals are expected to hold.

– Plan is a set of actions scheduled in order to satisfy goals. Each has an associated
time variable, possibly constrained by temporal constraints inTCS, similarly to
Goals, but defining when the action should be executed and imposing a partial
order over actions inPlan. Each action is also equipped with the preconditions for
its successful execution.

– TCS is a set of constraint atoms (referred to astemporal constraints) in some given
underlying constraint language with respect to some structure equipped with a no-
tion of Constraint Satisfaction. We assume that the constraint predicates include
<,≤, >,≤,=, 6=. These constraints bind the time of goals inGoals and actions
in Plan. For example, they may specify a time window over which the time of an
action can be instantiated, at execution time.

Goals and actions are uniquely identified by their associated time variable, which is
implicitly existentially quantified within the overall state.
To aid revision and partial planning,Goals andPlan form atree2. The tree is given im-
plicitly by associating with each goal and action its parent.Top-levelgoals and actions
are children of the root of the tree, represented by the (arbitrary) symbol⊥.

Reasoning capabilities.These include:

– Planning, generating a plan, if one exists in the overall state, for any given set of
input goals. These plans arepartial or total. A partial plan consists of (temporally
constrained) sub-goals and actions. Atotal plan consists solely of (temporally con-
strained) actions.

– Reactivity, reacting to perceived changes in the environment by modifyingGoals,
Plan, andTCS.

– Goal Decision, revising the top-most level goals by adapting the agent’s state to
changes in its own preferences and in the environment.

– Temporal Reasoning, reasoning about the evolving environment, and making pre-
dictions about properties holding in the environment, based on the partial informa-
tion the agent acquires.

Transitions. The state of an agent evolves by applying transition rules, which employ
capabilities and the Constraint Satisfaction. The transitions are:

– Goal Introduction (GI), changing the top-level goals, and using Goal Decision.
– Plan Introduction (PI), changingGoals andPlan, and using Planning.
– Reactivity (RE), changingGoals andPlan, and using the Reactivity capability.
– Sensing Introduction (SI), changingPlan by introducing new sensing actions for

checking the preconditions of actions already inPlan, and using Sensing.
– Passive Observation Introduction (POI), changingKB0 by introducing unsolicited

information coming from the environment, and using Sensing.
– Active Observation Introduction (AOI), changingKB0 by introducing the outcome

of (actively sought) sensing actions, and using Sensing.
– Action Execution (AE), executing actions, and thus changingKB0.
– State Revision (SR), revisingGoals andPlan, and using Temporal Reasoning and

Constraint Satisfaction.

2 In the detailed model we actually have two trees, the first containingnon-reactivegoals and
actions, the second containingreactivegoals and actions. All the top-level non-reactive goals
are either assigned to the agent by its designer at birth, or they are determined by the Goal
Decision capability, via the GI transition (see below). All the top-level reactive goals and
actions are determined by the Reactivity capability, via the RE transition (see below). Here for
simplicity we overlook the distinction amongst the two trees.

The effect of transitions is dependent on the concrete time of their application. We
briefly describe SR, as it will play an important role in section 5. Informally speaking,
SR revises a state by removing (i) all timed-out goals and actions, (ii) all executed
actions, (iii) all goals that have become obsolete because they are already believed to
have been achieved, (iv) siblings (in the tree) of goals and actions deleted in (i), and
(v) all descendants (in the tree) of goals deleted in (i)-(iv). A goal or action istimed-
out if and only if the temporal constraintsTCS of the state of the agent at the time of
application of SR constrain the time of the goal or action to be less than or equal to the
time of application of SR. A goal isachievedin a state if and only if it holds according
to the Temporal Reasoning capability.

Selection functions. Input to (some of the) transitions is given via selection functions,
taking the current stateS and timeτ as input:

– action selection function, cAS(S, τ), returning the set of actions inS to be executed
by AE at timeτ ;

– goal selection function, cGS(S, τ), returning the set of goals inS to be planned for
by PI at timeτ ;

– fluent selection function, cFS(S, τ), returning the set of properties inS to be sensed
by AOI at timeτ ;

– precondition selection function, cPS(S, τ), returning the set of preconditions of
actions inS for which sensing actions are to be introduced by SI at timeτ .

4 Cycle Theories

The behaviour of agents results from the application of transitions in sequences, re-
peatedly changing the state of the agent. These sequences are not fixed a priori, as in
conventional agent architectures, but are determined dynamically by reasoning with
declarative cycle theories, giving a form of flexible control. Cycle theories are given in
the framework of Logic Programming with Priorities (LPP). For the purposes of this
paper, we will assume that anLPP-theory, referred to asT , consists of four parts:

(i) a low-level partP , consisting of a logic program; each rule inP is assigned a name,
which is a term; e.g., one such rule, with namen(X), could be

n(X) : p(X)← q(X, Y), r(Y)
(ii) a high-level partH, specifying conditional, dynamic priorities amongst rules inP ;

e.g., one such priority rule, calledh(X), could beh(X) : n(X) � m(X)← c(X),
to be read: if (some instance of) the conditionc(X) holds, then the rule inP with
name (the corresponding instance of)n(X) should be given higher priority than the
rule inP with name (the corresponding instance of)m(X).

(iii) an auxiliary partA, defining predicates occurring in the conditions of rules inP
andH and not in the conclusions of any rule inP ;

(iv) a notion of incompatibility, here given as a set of rules defining the predicate
incompatible, e.g. incompatible(p(X), p′(X)), to be read: any instance of the
literal p(X) is incompatible with the corresponding instance of the literalp′(X).
We refer to the set of all incompatibility rules asI.

Any concrete LPP framework is equipped with a notion of entailment, that we denote
by |=pr. Intuitively, T |=prα iff α is the “conclusion” of a sub-theory ofP ∪A which is
“preferred” with respect toH ∪A in T over any other sub-theory ofP ∪A that derives
a “conclusion” incompatible withα (with respect toI). Here, we are assuming that the
underlying logic programming language is equipped with a notion of “entailment” that
allows to draw “conclusions”. In [10, 9, 7, 5, 3],|=pr is defined via argumentation.

Formalisation of Cycle theories.Here and in the rest of the paper, we will use notation
T (S, X, S′, τ) to represent application of transitionT at timeτ in stateS, given input
X, resulting in stateS′, and notation∗T (S, X) to represent that transitionT can be
potentially chosen as the next transition in stateS, with inputX.
Formally, a cycle theoryTcycle consists of the following parts.

– An initial partTinitial, that determines the possible transitions that the agent could
perform when it starts to operate. Concretely,Tinitial consists of rules of the form
∗T (S0, X)← C(S0, τ, X), now(τ)

which we refer to via the nameR0|T (S0, X). These rules sanction that, if condi-
tions C hold in the initial stateS0 at the initial timeτ , then the initial transition
could beT , applied to stateS0 and inputX.

– A basicpartTbasic that determines the possible transitions following given transi-
tions, and consists of rules of the form
∗T ′(S′, X ′)← T (S, X, S′, τ), EC(S′, τ ′, X ′), now(τ ′)

which we refer to via the nameRT |T ′(S′, X ′). These rules sanction that, after
transitionT has been executed, starting at timeτ in the stateS and resulting in
stateS′, and the conditionsEC evaluated inS′ at the current timeτ ′ are satisfied,
then transitionT ′ could be the next transition to be applied inS′, with input X ′.
EC are calledenabling conditionsas they determine whenT ′ can be applied after
T . They also determine inputX ′ for T ′, via calls to selection functions.

– A behaviourpartTbehaviour that contains rules describing dynamic priorities amongst
rules inTbasic andTinitial. Rules inTbehaviour are of the form
RT |T ′(S, X ′) �RT |T ′′(S, X ′′)←BC(S, X ′, X ′′, τ), now(τ)

with T ′ 6= T ′′, which we will refer to via the namePT
T ′�T ′′ . Recall thatRT |T ′(·)

andRT |T ′′(·) are (names of) rules inTbasic ∪ Tinitial. Note that, with an abuse of
notation,T could be 0 in the case that one such rule is used to specify a priority over
the first transition to take place, in other words, when the priority is over rules in
Tinitial. These rules inTbehaviour sanction that, at the current timeτ , after transition
T , if the conditionsBC hold, then we prefer the next transition to beT ′ overT ′′.
The conditionsBC are calledbehaviour conditionsand give the behavioural profile
of the agent.

– An auxiliary part including definitions for any predicates occurring in the enabling
and behaviour conditions.

– An incompatibility part, in effect expressing that only one (instance of a) transition
can be chosen at any one time.

Hence,Tcycle is an LPP-theory where: (i)P = Tinitial∪Tbasic, and (ii)H = Tbehaviour.

Operational Trace. The cycle theoryTcycle of an agent is responsible for its behaviour,
in that it induces anoperational traceof the agent, namely a (typically infinite) sequence
of transitions

T1(S0, X1, S1, τ1), . . . , Ti(Si−1, Xi, Si, τi), Ti+1(Si, Xi+1, Si+1, τi+1), . . .
such that

– S0 is the given initial state;
– for eachi ≥ 1, τi is given by the clock of the system (τi < τi+i);
– (Tcycle − Tbasic) ∧ now(τ1) |=pr ∗T1(S0, X1);
– for eachi ≥ 1

(Tcycle − Tinitial) ∧ Ti(Si−1, Xi, Si, τi) ∧ now(τi+1) |=pr ∗Ti+1(Si, Xi+1)
namely each (non-final) transition in a sequence is followed by the most preferred tran-
sition, as specified byTcycle. If, at some stage, the most preferred transition determined
by |=pr is not unique, we choose one arbitrarily.

Normal cycle theory. In defining profiles in section 5 we take thenormal cycle theory
as a starting point. This specifies a pattern of operation where the agent prefers to follow
a sequence of transitions that allows it to achieve its goals in a way that matches an
expected “normal” behaviour. Basically, the “normal” agent first introduces goals (if
it has none to start with) via GI, then reacts to them, via RE, and then repeats the
process of planning for them, via PI, executing (part of) the chosen plans, via AE,
revising its state, via SR, until all goals are dealt with (successfully or revised away).
At this point the agent returns to introducing new goals via GI and repeating the above
process. Whenever in this process the agent is interrupted via a passive observation,
via POI, it chooses to introduce new goals via GI, to take into account any changes
in the environment. Whenever it has actions which are “unreliable”, in the sense that
their preconditions definitely need to be checked, the agent senses them (via SI) before
executing the action. Whenever it has actions which are “unreliable”, in the sense that
their effects definitely need to be checked, the agent actively introduces actions that
aim at sensing these effects, via AOI, after having executed the original actions. The
full definition of the normal cycle theory is given in the appendix.

5 Behaviour Profiles

In this section we explore how cycle theories can be used to specify different profiles
of behaviour. We concentrate on two profiles, thecarefuland thefocussed.
In the careful profile the behaviour of the agent is such that it would re-examine its
commitments in terms of its goals and plans frequently to discard those that are no
longer needed or have become infeasible. Intuitively, this profile would be suitable for a
changing environment that intervenes in the agent’s operations, and the frequent ”self-
examination” of the agent can help it avoid being occupied with unnecessary activity
or activity which is bound to fail. It also ensures that the agent’s operations are not
hindered by superfluous items in the state and that reactive rules will not be triggered
unnecessarily by goals/actions that are timed-out and not achieved/executed.
With the focussed profile the agent concentrates on one (top-level) goal at a time and
only moves to other goals when that goal is achieved or is timed out. Intuitively this

profile is useful when the agent has goals that have become mutually unachievable. By
being focussed the agent increases its chances of achieving at least some of them.
Below we proceed to define each of the two profiles by giving a formal definition in
terms of trace characteristics, followed by specification of cycle theories that will in-
duce such traces. We then proceed to prove the advantages of the profile depending on
particular characteristics of the application.

5.1 Careful Profile

Definition 1 (Careful profile: trace-based characterisation).A careful agent is an
agent that will never generate an operational trace with two consecutive transitions
that are different from SR.
In fact, this condition is stronger than strictly necessary: As long as there are no re-
dundant or infeasible goals or actions no revision would be required. However, from
a pragmatic point of view, Definition 1 nevertheless provides us with an appropriate
characterisation of careful agents. This is so, becausecheckingwhether or not a state
includes redundant or infeasible goals or actions to be revised is just as costly as per-
forming a state revision in the first place.
Our next goal is to define a class of cycle theories that are guaranteed to induce an
operational trace where every other transition is an SR. As we shall see this is not
as straightforward a goal as it may seem. To illustrate the difficulties and to motivate
our choices (which are eventually going to overcome these difficulties), we start by
attempting to define a careful cycle theory as an extension of the normal cycle theory.

The normal-careful cycle theory. There are several ways of combining cycle theories
(in this case the normal cycle theory with the core rules necessary for characterising the
careful profile). One option would be to take the union of the two cycle theories (which
are sets of basic and behaviour rules) and then, where necessary, to introduce additional
behaviour rules that determine the agent’s behaviour in case of conflict between the
rules stemming from the different parts. Another way, which gives the profile designer
less freedom but which results in much simpler cycle theories, would be to work at the
level of basic rules as far as possible and to use suitable enabling conditions to control
the agent’s behaviour. This is the approach we are going to follow here.
To design a careful agent, we need to ensure that basic rules expressing thatSRshould
follow any other transitionT get priority over any conflicting rules. Instead of using
behaviour rules to this effect, we are simply going to delete such conflicting rules in the
first place. Hence, we end up with the following approach:

– Step 1:Take the normal cycle theory as a starting point.
– Step 2:Remove any basic rules (inTbasic) that speak about two consecutive tran-

sitions both of which are different fromSR.
– Step 3:Add the following basic rule (toTbasic) for eachT different fromSR:

RT |SR(S′, {}) : ∗SR(S′, {})← T (S, X, S′, τ)

Note that there cannot be any enabling conditions in this kind of new rule:SRneeds
to be enabled underanycircumstances. Note also that Step 3 might re-introduce rules
which already belong toTbasic. This causes no theoretical or practical problem. We thus
end up with the followingnormal-careful cycle theory:

– Tinitial is as for the normal cycle theory.
– Tbasic consists of the above rules of the formRT |SR and of the following rules:

RSR|PI(S
′, Gs) : ∗PI(S′, Gs)← SR(S, {}, S′, τ ′), Gs = cGS(S′, τ), Gs 6= {}, now(τ)

RSR|GI(S
′, {}) : ∗GI(S′, {})← SR(S, {}, S′, τ ′), Gs = cGS(S′, τ), Gs = {}, now(τ)

Tbasic does not contain any other rules, because all the remaining basic rules in
the normal cycle theory speak about transitions that should follow transitions other
thanSRand these are fixed for the careful profile.

– Tbehaviour is empty. Indeed, it turns out that also all of the rules inTbehaviour in
the normal cycle theory areredundant, because they speak about what to do after a
transition other thanSR.

In summary, the normal-careful cycle theory will force an agent to alternate betweenSR
andPI or GI (depending on whether there are currently goals to plan for or not). Such
an agent would be careful, but not very useful. Below we improve the cycle theory to
overcome this inadequacy.

The core-careful cycle theory.We improve the normal-careful cycle theory by adding
that every transition exceptSR, itself, should be enabled afterSR. Thus,Tbasic in the
core-careful cycle theorycontains, in addition to the basic rules in the normal-careful
cycle theory, the following rules:

RSR|RE(S′, {}) : ∗RE(S′, {})← SR(S, {}, S′, τ)
RSR|AE(S′, As) : ∗AE(S′, As)← SR(S, {}, S′, τ ′), As = cAS(S′, τ), As 6= {}, now(τ)
RSR|SI(S

′, P s) : ∗SI(S′, P s)← SR(S, {}, S′, τ ′), P s = cPS(S′, τ), P s 6= {}, now(τ)
RSR|AOI(S

′, F s) : ∗AOI(S′, F s)← SR(S, {}, S′, τ ′), F s = cFS(S′, τ), F s 6= {}, now(τ)
RSR|POI(S

′, {}) : ∗POI(S′, {})← SR(S, {}, S′, τ)

The following proposition states thecorrespondencebetween thecore-careful cycle
theoryand the (trace-based characterisation of the) careful profile given in Definition 1:

Proposition 1 (Careful profile). The core-careful cycle theory induces the careful pro-
file of behaviour: Any agent using this cycle theory will never generate an operational
trace with two consecutive transitions that are different from SR.

Proof. This follows immediately from the fact that the basic part of the cycle theory
forces an SR after every other type of transition, and there is exactly one basic rule to
determine the follow-up of any transition different fromSR.

Other careful cycle theories The two careful cycle theories we have considered so
far are just two examples; there is a range of cycle theories that conform to the careful
behaviour profile. Our second example, the core-careful cycle theory is the most general
cycle theory conforming to the careful profile.
For concrete applications, we may wish to combine the features of careful behaviour
with other more specific features. We can construct a careful cycle theory of our choice
by taking the core-careful cycle theory as a starting point and then imposing additional
behaviour constraints using the following means:

– strengthening the enabling conditions in basic rules that determine the follow-up
transition for an SR;

– deleting basic rules that determine the follow-up transition for an SR;

– adding any kind of behaviour rules;
– deleting rules that have become redundant due to other changes.

Note, however, that wecannotadd any enabling conditions to the basic rules that state
thatSRhas to follow any other transition. Otherwise, the resulting cycle theory cannot
be guaranteed to conform to the careful profile of behaviour anymore. We also cannot
delete such a rule, unless it has already become redundant due to other changes in
the cycle theory. On the other hand, we do have complete freedom with respect to the
behaviour rules we might wish to add, because the basic rules never admit any conflict
as to what transition to choose after a transition different fromSRin the first place.
Clearly, any such careful cycle theory will also induce the careful profile of behaviour
in the sense of Proposition 1.

A property of the careful profile. Informally, under certain circumstances:

– Careful agents will never generate a reaction via the reactivity transition to timed-
out unachieved goals or timed-out unexecuted actions.

– Careful agents will never generate a reaction via the reactivity transition to actions
that may not be timed out yet but which are unexecuted and are no longer necessary.

More formally:

Theorem 1. The following will never contribute to the generation of a reaction (i.e. an
action inPlan or goal inGoals) via the RE transition:

1. a timed-out unexecuted action,
2. a timed-out unachieved goal,
3. an unexecuted action whose execution is no longer needed, i.e.

(a) with an ancestor which has already been achieved, or
(b) with a sibling that has been timed-out, or
(c) with an ancestor which has been timed-out,

provided that no action and no goal is timed out between an SR transition and its
immediate successor if that is an RE transition.

Proof. Let the assumption hold that no action and no goal is timed out between an SR
transition and its immediate successor if that is an RE transition. Suppose a careful agent
applies RE in a stateS = 〈KB, Goals, P lan, TCS〉. Then by Definition 1, because
SR must have been applied in the state immediately prior toS, no action or goal of the
type specified in 1–3, above exists in stateS. Therefore no such action or goal could
possibly contribute to the generation of any reaction by RE.

5.2 Focussed Profile

In the focussedprofile of behaviour an agent does not plan for more than one top-level
goal at a time. More specifically, a focussed agent remains committed to a goal amongst
its top-level goals until

– that goal has been successfully achieved, or
– that goal has become infeasible, or
– that goal is not preferred by the Goal Decision capability anymore, when invoked

by theGI transition, or

– that goal has an empty plan in the state.3

The advantages of the focussed profile come into effect in highly time-critical domains
as well as domains where an agent has several goals with mutually incompatible plans.
In such situations, a focussed agent can be expected to achieve, at least, some goals,
whereby an unfocussed agent may fail completely. This applies, in particular, to agents
that have a preference for total planning. By concentrating planning on a single goal at
a time, a focussed agent is likely to be faster and it will also avoid wasting computing
resources over incompatible plans for other goals.
Formally, the focussed profile has the following characteristic: A focussed agent, un-
der no circumstances, will generate an operational trace that includes a state with two
distinct top-level goals with children, neither of which is either achieved or infeasible.
Here, a goalG is calledfeasibleiff neither itself nor any of its descendents is timed-out.
Note that this notion of infeasibility need not persist. A goalG may, at some point,
be infeasible, because an action in its current plan is timed-out, butG may again be-
come feasible later on, after the agent has revised its state and computed a new plan.
Therefore, the only way to ensure that switching to a new top-level goal for planning
is admissible (under the focussed profile) is to first check that infeasible goals willstay
infeasible. This requires an SR. Hence, we can give the following alternative definition
of the focussed profile, which is simpler than our earlier definition.

Definition 2 (Focussed profile: trace-based characterisation).A focussed agent is
an agent that, under no circumstances, will generate an operational trace that includes
a state with two top-level goals with children.

This definition is stronger (more restrictive) than our first definition, but as argued ear-
lier, it is operationally equivalent to that definition, because an agent can only be sure
that switching goals will not violate the focussed profile after having executed an SR
(or after having performed an analogous check).

Possible extensions.Note that, according to our definition, focussed agents do not deal
with more than one top-level goal at a time, but may switch between top-level goals in
some situations, as exemplified by the following example.

Example 1.Consider the following (portion of a) trace:

. . . , SR(S, {}, S′, τ), P I(S′, Gs, S′′, τ ′), . . .

with the top-level goals ofS, S′, S′′ given by{G1, G2}. Assume thatG1 already has got
a plan inS, i.e. the set of items inGoals(S)∪Plan(S) with ancestorG1 is not empty.
Assume also thatG2 has no plan inS, i.e. the set of items inGoals(S)∪Plan(S) with
ancestorG2 is empty. Suppose that all items in the plan forG1 in S are timed-out atτ ,
and thusS′ is such thatGoals(S′) is the set of all top-level goals inS′ andPlan(S′) =
{}. Suppose also that neitherG1 nor G2 are timed-out or achieved atτ ′, but PI is
introducing a plan forG2, so that the set of items inGoals(S′′) ∪ Plan(S′′) with
ancestorG2 is not empty. The agent with this trace is focussed according to definition 2.
However, it does switch from dealing with goalG1 to dealing with goalG2, despite goal
G1 being still unachieved and feasible.

3 The need for this last item will become clear in Example 1.

Definition 2 of focussed agent may be modified to prevent goal switching, by com-
paring successive agent states in traces and force that once an agent has been plan-
ning/executing for one top-most level goal in one state, it must stick to that goal in suc-
cessive states, until the goal has been achieved or has become unachievable. This would
amount to getting rid of the last item in the informal description of focussed agent at
the beginning of Section 5.2 (and adding some other suitable conditions instead). This
stronger definition of focussed agent would however force extending the notion of cy-
cle theory and operational trace, either by looking at histories of transitions rather than
individual transitions when deciding on the next transition, or by introducing additional
information into cycle theories, such as variables holding the current top-level goal be-
ing dealt with. We therefore leave the stronger definition to future work.
Note also that our notion of focussed agent only refers totop-levelgoals, and not to
sub-goals or actions. The notion of focussed agent could be extended so as to define
agents that are focussed all the way, from top-level goals down.

Focussed Cycle Theories.To achieve the abstract specification, we need a cycle theory
that ensures that before any PI an SR has been performed. This is to ensure that we can
proceed with planning for a top-level goal even if some of its current children have
become infeasible. However, rather than implementing this behaviour directly, we are
going to ensure that PI is only enabled with respect to a set of goals that a focussed
agent may plan for given its current state according to the Definition 2. (This, in effect,
encourages an SR transition when a PI transition is not enabled.)

Definition 3 (Focussed cycle theories).A cycle theory is called focussed iff the initial
rule R0|PI(S, Gs) (in Tinitial) and the basic rule (inTbasic) RT |PI(S, Gs) for any
transitionT include the enabling conditionfocussed(Gs′, S,Gs), where:

– given thatGs is the set of goals to which PI will be applied andGs′ ⊇ Gs is the
set of goals returned by the goal selection function, then

– the predicatefocussed(Gs′, S,Gs) holds iff all the goals inGs are descendants of
the same top-level goal (possibly including that top-level goal itself) and no other
top-level goal has got any children.

The focussed variant of the normal cycle theory would have inTinitial the rule

R0|PI(S0, Gs) : ∗PI(S0, Gs) ← Gs′ = cGS(S0, τ),

focussed(Gs′, S0, Gs), Gs 6= {}, now(τ)

instead of the original rule

R0|PI(S0, Gs) : ∗PI(S0, Gs)← Gs = cGS(S0, τ), Gs 6= {}, now(τ)

Similarly, the focussed variant of the normal cycle theory would have inTbasic the rule

RAE|PI(S
′, Gs) : ∗PI(S′, Gs) ← AE(S, As, S′, τ ′), Gs′ = cGS(S′, τ),

focussed(Gs′, S, Gs), Gs 6= {}, now(τ)

instead of the original rule
RAE|PI(S

′, Gs) : ∗PI(S′, Gs)← AE(S, As, S′, τ ′), Gs = cGS(S′, τ), Gs 6= {}, now(τ)

The correspondencebetween the trace-based characterisation of thefocussed profile
and the class of focussed cycle theories may be stated as follows:

Proposition 2 (Focussed profile).Any cycle theory that is focussed according to Def-
inition 3 induces the focussed profile of behaviour according to Definition 2.

Proof. The enabling conditionfocussed(Gs′, S,Gs) restricts the set of goals for which
the agent may plan to precisely the set of goals that are available for planning according
to the trace-based characterisation of the focussed profile. The claimed correspondence
then follows immediately from the fact that PI is the only transition that can add non-
top-level goals to a state.

A property of the focussed profile. Let a focussed agent be one equipped with a
focussed cycle theory, and a normal agent be one equipped with the normal cycle theory.
Then if the two agents have a set of goals for which they have no compatible plans then
the focussed agent may be able to achieve at least some of its goals while the normal
agent may not be able to achieve any of the goals. The theorem below shows under what
conditions the focussed agent is guaranteed to achieve more of its goals compared to
the normal agent. Note that conditions 1-6 simply set the scene for the theorem whereas
conditions 7-9 restrict features of the environment and the application.

Theorem 2. Let f be a focussed agent andn be a normal agent. Letf andn be in a
stateS = 〈KB, Goals, P lan, TCS〉 at timeτ such that all the conditions below hold:
1. Plan is empty.
2. Goals consists of top-level goalsG1, . . . ,Gn, n > 1 4.
3. The goal selection function, in stateS, at all timesτ ′, τ ′ ≥ τ , selects the same set

of k goals for some1 < k ≤ n, until one or more such goals are achieved. Assume
these goals are{G1, . . . , Gk}, without loss of generality.

4. The agents’ PI transition produces a total plan for all its input goals.
5. At all times afterτ , given input goals{G1, . . . , Gk}, the agents’ PI transition re-

turns no plan, because none exists in the overall state.
6. At all times afterτ , given input goals{Gi}, i = 1, . . . k, the agents’ PI transition

returns a (total) plan.

Then,f will achieve at least one of the goals amongstG1, . . . ,Gn, whilen will achieve
none of them, provided that:

7. The agents’ RE transition generates no goals or actions.
8. No POI, AOI transitions are performed, and no GI transition is performed after the

establishment of top-level goalsG1, . . . ,Gn.
9. Goals and actions are non-time critical, i.e. no goal or action is timed out.

Proof. (Sketch) Consider the case of the normal agentn: by conditions 3,5,7,8 the state
of n remains the same (although time progresses). In this state, by conditions 3 and 5,
n can never make any progress towards achieving any of its top-level goals.
Now consider the case of the focussed agentf : At some timeτ1, τ1 ≥ τ , f performs PI.
By conditions 3 and 6 and the definition of the focussed profile a goalGi, i = 1, . . . k,
is selected and PI succeeds in producing a complete plan forGi, and updates its state
by adding all the produced actionsAs to its Plan and updatingTCS appropriately.

4 Conditions 1. and 2. can arise, for example, iff andn have just executed GI starting from the
same initial state.

These new actions will then all be executed. They will not be timed-out by condition 9.
So they may be removed from the state of the agent by SR only if their associated goal
is achieved. Any new goals and actions that may be introduced by later applications of
PI will not interfere with the execution of the actions in As. Therefore, finally, after all
the actions are executed, it will be possible to prove by the Temporal Reasoning that
goalGi which was selected at timeτ1 is achieved.

Note that conditions 7–9 are sufficient but not necessary conditions. For example con-
dition 8 can be replaced with one that requires only that any observation recorded as
a result of a POI is “independent” of the goalsG1, . . . , Gn, and allows GI transitions
but imposes restrictions on their frequency. It is possible to construct examples where
some, possibly many, of conditions 7–9 do not hold, but still the focussed agent per-
forms better than the normal one in goal achievement terms.

6 Conclusion

In this paper, building on our earlier work [6], we have further explored the use of
cycle theories for declarative control of agents. We showed how in the case of KGP
agents we can define concrete and useful agent profiles or personalities by varying the
rules in cycle theories. We showed two such profiles in detail, careful and focussed,
and exemplified and formally proved their advantages. The cycle theories for these two
profiles are no more complicated than the normal cycle theory, and possibly, in the case
of the careful profile, the cycle theory is simpler.
The careful profile is best suited to a dynamic unpredictable environment, but one in
which the agent does not have strict deadlines. The focussed profile is best suited to
resource-bounded agents. The theoretical analysis of the profiles not only allows ex-
ploration of heterogeneity of agents, but it can also provide guidelines to designers of
agents and implementers, for example those using the PROSOCS platform. There is
scope for exploring a number of other profiles, some of which have been introduced in
[1]. Exploring other profiles, parameterising their advantages and disadvantages accord-
ing to factors in the environment and application domains and exploring how profiles
can be usefully combined are subjects of current and future research. Currently we see
no problem in combining the careful and focussed profiles.
Our work on profiles shares some of the objectives of the work on commitment strate-
gies based on the BDI model [11]. Three commitment strategies have been defined,
blind, single minded, andopen minded. They are defined by expressing relationships
between current and future intentions. A blindly committed agent, for example, main-
tains its intentions as long as it believes that it has achieved them, while a single minded
agent maintains its intentions until it believes they are achievable. Our work on profiles
and their consequences goes some way beyond these commitment strategies.
Our approach shares the aims of 3APL [4] to make it possible to program the agent cycle
and make the selection mechanisms explicit. But it goes beyond 3APL by abandoning
the concept of fixed cycles and replacing it with dynamic programmable cycle theories.

Acknowledgments

This work was partially funded by the IST programme of the EC, FET under the IST-
2001-32530 SOCS project, within the GC proactive initiative. We are also grateful to
A.C. Kakas and U. Endrich for early discussions regarding this work.

References

1. F. Athienitou, A. Bracciali, U. Endriss, A.C. Kakas, W. Lu, P. Mancarella, F. Sadri, K. Stathis,
and F. Toni. Profile related properties. Technical report, SOCS deliverable, 2005.

2. A. Bracciali, N. Demetriou, U. Endriss, A.C. Kakas, W. Lu, P. Mancarella, F. Sadri,
K. Stathis, G. Terreni, and F. Toni. The KGP model of agency for global computing: Com-
putational model and prototype implementation. InGlobal Computing 2004 Workshop, page
342. Springer Verlag LNCS 3267, 2005.

3. Y. Dimopoulos and A. C. Kakas. Logic programming without negation as failure. InProc.
ILPS, pages 369–384, 1995.

4. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. Ch. Meyer. Agent programming in
3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

5. A. C. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics for logic programs.
pages 504–519, 1994.

6. A. C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. Declarative agent control. In
Proc. CLIMA V, 2004.

7. A. C. Kakas and P. Moraitis. Argumentation based decision making for autonomous agents.
pages 883–890, Melbourne, Victoria, July 14–18 2003.

8. A.C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of agency. In
Proc. ECAI-2004, 2004.

9. R.A. Kowalski and F. Toni. Abstract argumentation.Artificial Intelligence and Law Journal,
Special Issue on Logical Models of Argumentation, 4:275–296, 1996.

10. H. Prakken and G. Sartor. A system for defeasible argumentation, with defeasible priorities.
In International Conference on Formal and Applied Practical Reasoning, Springer Lecture
Notes in AI 1085, pages 510–524. 1996.

11. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In
Readings in Agents, pages 317–328. 1997.

12. K. Stathis, A.C. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali. PROSOCS: A
platform for programming software agents in computational logic. InProc. AT2AI, 2004.

A Normal cycle theory in full

– Tinitial:
R0|GI(S0, {}) : ∗GI(S0, {})← empty goals(S0)
R0|PI(S0, Gs) : ∗PI(S0, Gs)← Gs = cGS(S0, τ), Gs 6= {}, now(τ)
R0|POI(S0, {}) : ∗POI(S0, {})← poi pending(τ), now(τ)

– Tbasic:
rules for deciding what might follow AE:
RAE|PI(S′, Gs) : ∗PI(S′, Gs) ← AE(S, As, S′, τ ′), Gs = cGS(S′, τ), Gs 6=
{}, now(τ)
RAE|AE(S′, As′) : ∗AE(S′, As′)←AE(S, As, S′, τ ′), As′ = cAS(S′, τ), As′ 6=
{}, now(τ)
RAE|AOI(S′, Fs) : ∗AOI(S′, Fs)← AE(S, As, S′, τ ′), Fs = cFS(S′, τ), Fs 6=
{}, now(τ)
RAE|SR(S′, {}) : ∗SR(S′, {})← AE(S, As, S′, τ ′)
RAE|GI(S′, {}) : ∗GI(S′, {})← AE(S, As, S′, τ ′)
rules for deciding what might follow SR:

RSR|PI(S′, Gs) : ∗PI(S′, Gs) ← SR(S, {}, S′, τ ′), Gs = cGS(S′, τ), Gs 6=
{}, now(τ)
RSR|GI(S′, {}) : ∗GI(S′, {})← SR(S, {}, S′τ ′), Gs = cGS(S′, τ), Gs = {}, now(τ)
rules for deciding what might follow PI:
RPI|AE(S′, As) : ∗AE(S′, As) ← PI(S, Gs, S′, τ ′), As = cAS(S′, τ), As 6=
{}, now(τ)
RPI|SI(S′, Ps) : ∗SI(S′, Ps) ← PI(S, Gs, S′, τ ′), Ps = cPS(S′, τ), Ps 6=
{}, now(τ)
rules for deciding what might follow GI:
RGI|RE(S′, {}) : ∗RE(S′, {})← GI(S, {}, S′, τ)
RGI|PI(S′, Gs) : ∗PI(S′, Gs) ← GI(S, {}, S′, τ ′), Gs = cGS(S′, τ), Gs 6=
{}, now(τ)
rules for deciding what might follow RE:
RRE|PI(S′, Gs) : ∗PI(S′, Gs) ← RE(S, {}, S′, τ ′), Gs = cGS(S′, τ), Gs 6=
{}, now(τ)
RRE|SI(S′, Ps) : ∗SI(S′, Ps) ← RE(S, {}, S′, τ ′), Ps = cPS(S′, τ), Ps 6=
{}, now(τ)
RRE|AE(S′, As) : ∗AE(S′, As) ← RE(S, {}, S′, τ ′), As = cAS(S′, τ), As 6=
{}, not(τ)
RRE|SR(S′, {}) : ∗SR(S′, {})← RE(S, {}, S′, τ ′)
rules for deciding what might follow SI:
RSI|AE(S′, As) : ∗AE(S′, As) ← SI(S, Ps, S′, τ ′), As = cAS(S′, τ), As 6=
{}, now(τ)
rules for deciding what might follow AOI :
RAOI|AE(S′, As) : ∗AE(S′, As)← AOI(S, Fs, S′, τ ′), As = cAS(S′, τ), As 6=
{}, now(τ)
RAOI|SR(S′, {}) : ∗SR(S′, {})← AOI(S, Fs, S′, τ ′)
RAOI|SI(S′, Ps) : ∗SI(S′, Ps) ← AOI(S, Fs, S′, τ ′)Ps = cPS(S′, τ), Ps 6=
{}, now(τ)
rules for deciding when POI should take place:
RT |POI(S′, {}) : ∗POI(S′, {})← T (S, X, S′, τ ′), poi pending(τ), now(τ)
for all transitionsT ;
rules for deciding what might follow POI :
RPOI|GI(S′, {}) : ∗GI(S′, {})← POI(S, {}, S′, τ)
RPOI|RE(S′, {}) : ∗RE(S′, {})← POI(S, {}, S′, τ)
RPOI|SR(S′, {}) : ∗SR(S′, {})← POI(S, {}, S′, τ)

– Tbehaviour:
GI is given higher priority if there are no goals in Goals and actions inPlan:
PT

GI�T ′ :RT |GI(S, {}) � RT |T ′(S, X)← empty goals(S), empty plan(S)
for all T, T ′, with T ′ 6= GI andT possibly 0;
GI is also given higher priority after a POI :
PPOI

GI�T :RPOI|GI(S′) � RPOI|T (S, S′) for all T 6= GI;
after GI, RE is given higher priority :
PGI

RE�T :RGI|RE(S, {}) � RGI|T (S, X) for all T 6= RE;
after RE, PI is given higher priority :
PRE

PI�T :RRE|PI(S, Gs) � RRE|T (S, X) for all T 6= PI;

after PI, AE is given higher priority, unless there are actions in the actions se-
lected for execution whose preconditions are “unreliable” and need checking,
in which case SI will be given higher priority:
PPI

AE�T :RPI|AE(S, As) � RPI|T (S, X)← not unreliable pre(As)
for all T 6= AE;
PPI

SI�T :RPI|SI(S, Ps) � RPI|T (S, As)← unreliable pre(As)
for all T 6= SI;
after SI, AE is given higher priority :
PSI

AE�T :RSI|AE(S, As) � RSI|T (S, X) for all T 6= AE;
after AE, AE should be given higher priority until there are no more actions
to execute inPlan, in which case either AOI or SR should be given higher
priority, depending on whether there are actions which are “unreliable”, in
the sense that their effects need checking, or not:
PAE

AE�T :RAE|AE(S, As) � RAE|T (S, X) for all T 6= AE;
PAE

AOI�T :RAE|AOI(S, Fs) � RAE|T (S, X)← empty executable plan(S), unreliable post(S)
for all T 6= AOI;
PAE

SR�T :RAE|SR(S, {}) � RAE|T (S, X)← empty executable plan(S), not unreliable post(S)
for all T 6= SR;
after SR, PI should have higher priority:
PSR

PI�T :RSR|PI(S, Gs) � RSR|T (S, {}) for all T 6= PI;
after any transition, POI is preferred over all other transitions :
PT

PI�T ′ : RT ||OI(S) � RT |T ′(S, X) for all T, T ′, with T ′ 6= POI andT
possibly 0;
in the initial state, PI is given higher priority :
P0

PI�T :R0|PI(S, Gs) � R0|T (S, X) for all T 6= PI;
– The auxiliary part includes definitions forempty goals, unreliable pre, unreliable post,

empty executable plan, poi pending etc. Note thatpoi pending(τ) holds when
there is an input from the environment pending.

